赵长健,张荣森.Lp-极投影Brunn-Minkowski不等式[J].数学年刊A辑,2010,31(2):239~246
Lp-极投影Brunn-Minkowski不等式
Lp-Polar Projection Brunn-Minkowski Inequality
  
DOI:
中文关键词:  q-对偶混合体积  Lp-极投影体  Lp-混合投影体  Brunn-Minkowski不等式
英文关键词:q-dual mixed volumes  Lp-polar projection bodies  Lp-mixed pro jection bodies  Brunn-Minkowski inequality
基金项目:国家自然科学基金,香港特别行政区研究资助局资助项目
Author NameAffiliationE-mail
ZHAO Changjian Department of Mathematics, China Jiliang University, Hangzhou 310018, China. chjzhao@yahoo.com.cn; chjzhao@163.com 
CHEUNG Wing-Sum Department of Mathematics, The University of Hong Kong, Hong Kong, China. wscheung@hku.hk 
Hits: 1042
Download times: 914
中文摘要:
      将经典的对偶混合体积概念推广到Lp空间,提出了"q-全对偶混合体积"的概念.将传统的P≥1的Lp投影体概念拓展,提出P<1时的Lp投影体和混合投影体概念,并且建立了Lp-极投影Brunn-Minkowski不等式.作为应用,推广了熟知的极投影Brunn-Minkowski不等式,获得了投影Brunn-Minkowski不等式的Lp空间的极形式.
英文摘要:
      In this paper, the authors first generalize the notion of classical dual mixed volume to Lp-space and introduce the notion of q-dual mixed volume. Moreover, they extend the notion of classical Lp(p≥1)-projection bodies and introduce the notions of Lp(p < 1)-projection and mixed projection bodies, and establish the Brunn-Minkowski inequality for Lp-polar mixed projection bodies. As applications, the well-known Brunn-Minkowski inequality for polar of projection bodies is generalized and an Lp-polar form of Brunn-Minkowski inequality for projection bodies is obtained.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.