何军华,谭友军.正交模上Clifford代数的支配权[J].数学年刊A辑,2011,32(1):11~26
正交模上Clifford代数的支配权
Dominant Weights of the Clifford Algebra over an Orthogonal Module
  
DOI:
中文关键词:  Clifford代数  正交模  支配权  
英文关键词:Clifford algebra  Orthogonal module  Dominant weights  
基金项目:国家自然科学基金(No.10301024)资助的项目
Author NameAffiliationE-mail
HE Junhua Mathematical College,Sichuan University,Chengdu 610064,China,School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 610054,China. hejunhua@uestc.edu.cn 
TAN Youjun Corresponding author.Mathematical College,China. ytan@scu.edu.cn 
Hits: 1157
Download times: 766
中文摘要:
      研究了正交g-模V上的Clifford代数C(V)的支配权,其中g-模C(V)是Kostant给出的旋模Spin(V)的倍数.设Δ(V)是V的非零权组成的集合.证明了Δ(V)任一正凸半的半和总是C(V)的一个支配权.反之,如果某一个半和是C(V)的重数为2(m_V(O)+dimV)/2的最高权,那么该半和一定是Δ(V)的某个正凸半的半和
英文摘要:
      This paper deals with dominant weights of the Clifford algebra $C(V)$ over an orthogonal $\g$-module $V$, where the $\g$-module $C(V)$ is a multiple of Kostant's spin module ${\rm Spin}(V)$. Let $\triangle(V)$ be the set of nonzero weights of $V$. The half-sum of any positive convex half of $\triangle(V)$ is shown to be a dominant weight of $C(V)$. Conversely, if a half-sum is a highest weight of $C(V)$ with multiplicity $2^{\frac{m_{V}(0)+\dim V}{2}}$, then it is given by a positive convex half of $\triangle(V)$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.