李世荣,杜妮,钟祥贵.有限群的素数幂阶S-拟正规嵌入子群[J].数学年刊A辑,2011,32(1):27~32
有限群的素数幂阶S-拟正规嵌入子群
On S-Quasinormally Embedded Subgroups of Prime Power Order in Finite Groups
  
DOI:
中文关键词:  饱和群系  S-拟正规嵌入子群  
英文关键词:Saturated formation  S-quasinormally embedded subgroup  
基金项目:国家自然科学基金(No.0249001,No.10961007); 中央高校基本科研业务费专项资金(No.2010121003); 广西省自然科学基金(No.0575050)资助的项目
Author NameAffiliationE-mail
LI Shirong College of Mathematics and Information Science,Guangxi University,Nanning 530004,China. shirong@gxu.edu.cn 
DU Ni Corresponding author.School of Mathematical Sciences.Xiamen University,Xiamen 361005,Fujian,China. duni@xmu.edu.cn 
ZHONG Xianggui College of Mathematical xgzhong@gxnu.edu.cn 
Hits: 1519
Download times: 821
中文摘要:
      设$G$ 为有限 $p$-可解群, 其中$p$ 为$|G|$的奇素因子. 若$P$ 为$G$的Sylow $p$-子群且最小生成系含 $d$个元素.考虑集合${\cal M}_d(P)=\{P_1,\cdots,P_d\}$,其中$P_1,\cdots,P_d$是$P$的极大子群且满足bigcap\limits_{i=1}^d P_i=\Phi (P)$. 证明了若 ${\cal M}_d(P)$中每个元在$G$中是$S$-拟正规嵌入的, 则 $G$ 为$p$-超可解群.作为应用,还得到了一些进一步的结论.
英文摘要:
      $p$-solvable finite group, where $p$ is an odd prime divisor of $|G|$, and $P$ be a Sylow $p$-subgroup of $G$ with the smallest generator number $d$. Consider the set ${\cal M}_d(P)=\{P_1,\cdots,P_d\}$, where $P_1,\cdots,P_d$ are the maximal subgroups of $P$ such that $\bigcap\limits_{i=1}^d P_i=\Phi (P)$. It is shown that if every member of ${\cal M}_d(P)$ is $S$-quasinormally embedded in $G$, then $G$ is $p$-supersolvable. As its applications, some further results are obtained.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.