陶志雄.Jones多项式的零点[J].数学年刊A辑,2011,32(1):63~70
Jones多项式的零点
On the Zeros of Jones Polynomial
  
DOI:
中文关键词:  纽结  链环  Jones多项式  多项式的零点  Mahler测度  
英文关键词:Knot  Link  Jones polynomial  Zeros of polynomial  Mahler measure  
基金项目:
Author NameAffiliationE-mail
TAO Zhixiong School of Science,Zhejiang University of Science and Technology,Hangzhou 310023,China. taozhx@zust.edu.cn 
Hits: 1214
Download times: 862
中文摘要:
      利用数论理论证明了纽结的Jones多项式仅有可能的有理根是O,而链环的Jones多项式仅有可能的有理根是0和-1.给出了作为Jones多项式根的所有可能单位根,以及所有可能的具有平凡Mahler测度的Jones多项式.最后指出了交叉数不超过11的纽结中,只有4_1,8_9,9_(42),K11n19的Jones多项式具有平凡的Mahler测度,从而回答了林晓松提出的关于Mahler测度的一个问题.
英文摘要:
      By using the number theory, this author proves that the only possible rational root of the Jones polynomial of a knot is $0$ and the only possible rational roots of the Jones polynomial of a link are $0$ and $-1$. Both all the possible roots of unity which are zeros of the Jones polynomials and all the possible Jones polynomials which have trivial Mahler measure are given. Finally, it is indicated that in all knots with up to 11 crossings, only the Jones polynomials of $4_1, 8_9, 9_{42}, K11n19$ have trivial Mahler measure and then it answers one of Lin's problems.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.