乔梅红,齐欢,刘安平,田天海.脉冲输入免疫因子的HBV模型的稳定性和持久性分析[J].数学年刊A辑,2011,32(2):173~184
脉冲输入免疫因子的HBV模型的稳定性和持久性分析
Analysis of Stability and Permanence for an HBV Model with Impulsive Releasing Immune Factor
  
DOI:
中文关键词:  乙型肝炎病毒  数学模型  药物治疗  全局渐近稳定性  
英文关键词:Hepatitis B virus  Mathematical model  Drug treatment  Global asymptotic stability  
基金项目:国家自然科学基金(No.60774036); 湖北省自然科学基金重点项目(No.2008CDA063); 中央高校基本科研业务费专项资金优秀青年教师基金(No.CUGL100238)资助的项目
Author NameAffiliationE-mail
QIAO Meihong School of Mathematics and Physics,China University of Geoscience(Wuhan),Wuhan 430074,China. qiaomeihong@126.com 
QI Huan Department of Control Science and Engineering,Huazhong University of Science and Technology,China. qihuan@mail.hust.edu.cn 
LIU Anping School of Mathematics and Physics,China University of Geoscience(Wuhan),Wuhan 430074,China. wh_apliu@sina.com 
TIAN Tianhai School of Mathematical Sciences, Monash University, Melbourne Vic 3800, Australia. tianhai.tian@sci.monash.edu.au 
Hits: 1143
Download times: 777
中文摘要:
      提出了一个数学模型,用于研究脉冲投放免疫因子对HBV传染病动力学的影响. 通过利用脉冲微分不等式和比较定理,证明了HBV 模型的无病周期解的存在性, 给出了无病周期解的全局渐近稳定性和系统的持续性的充分条件. 研究结果表明: 短的投放周期或适当的免疫因子投放量可以导致HBV 的清除.
英文摘要:
      A mathematical model is proposed to study the transmission dynamics of hepatitis B virus (HBV) treated with impulsive releasing immune factor. Using the impulsive differential inequality and comparative theorem, the authors investigate the existence of infection-free periodic solution of the impulsive HBV system, the sufficient conditions for the global asymptotic stability of the infection-free periodic solution and for the permanence of HBV. Analysis results indicate that a short releasing period of the immune factor or a proper pulse releasing quantity leads to the eradication of the HBV.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.