危合文,叶亚盛.分担值与正规族[J].数学年刊A辑,2011,32(2):213~212
分担值与正规族
Sharing Values and Normal Families
  
DOI:
中文关键词:  亚纯函数  分担值  正规族  
英文关键词:Meromorphic functions  Sharing values  Normal families  
基金项目:国家自然科学基金(No.10671067)资助的项目
Author NameAffiliationE-mail
WEI Hewen Tin Ka Ping College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
School of Mathematics and Computer Science, Jianghan University, Wuhan 430056, China. 
weihew@126.com 
YE Yasheng Tin Ka Ping College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China yashengye@yahoo.com.cn 
Hits: 1274
Download times: 723
中文摘要:
      设$\mathcal{F}$是平面区域$\mathbf{D}$上的亚纯函数族, $a, b$是两个有穷非零复数. 如果$\forall f \in \mathcal{F}$, $f(z)=a \Rightarrow f^{(k)}(z)=a$, $f^{(k)}(z)=b \Rightarrow f^{(k+1)}(z)=b$, 且$f-a$的零点重数至少为$k \ (k \geq 3)$, 那么函数族$\mathcal{F}$在$\mathbf{D}$内正规; 当$k=2$时, 在条件$a \neq 4b$的情况下, 同样有函数族$\mathcal{F}$在$\mathbf{D}$内正规.
英文摘要:
      Let $\mathcal{F}$ be a family of meromorphic functions on domain $\mathbf{D}$, $a, b$ be two non-zero distinct finite complex numbers. If $\forall f \in \mathcal{F}$, $f(z)=a \Rightarrow f^{(k)}(z)=a$, $f^{(k)}(z)=b \Rightarrow f^{(k+1)}(z)=b$, and all zero points of $f-a$ are of multiplicity at least $k \ (k \geq 3)$, then $\mathcal{F}$ is normal on $\mathbf{D}$; in the case of $k=2$, if $a \neq 4b$, then $\mathcal{F}$ is also normal on $\mathbf{D}$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.