杨昭.多面体截面和小覆盖的闭子流形[J].数学年刊A辑,2011,32(2):237~244
多面体截面和小覆盖的闭子流形
Section of Polytope and Closed Submanifold of Small Cover
  
DOI:
中文关键词:  小覆盖  群作用  多面体  
英文关键词:Small cover  Group action  Polytope  
基金项目:国家自然科学基金(No.10931005); 上海市自然科学基金(No.10ZR1403600)资助的项目
Author NameAffiliationE-mail
YANG Zhao School of Mathematical Sciences,Fudan University,Shanghai 200433,China. 062018008@fudan.edu.cn 
Hits: 994
Download times: 728
中文摘要:
      设$\pi:M^{n} \rightarrow P^n$是$P^{n}$上的小覆盖, $S$是$P^{n}$的任意一个$n-1$维截面. 给出了$\pi^{-1}(S)$是$n-1$维闭子流形 (或者两个相互同胚$n-1$维闭子流形的不交并), 以及$\pi^{-1}(S)$是$n-1$维伪流形的充要条件.
英文摘要:
      Let $\pi:M^{n} \rightarrow P^n$ be a small cover of $P^{n}$, $S$ an $(n-1)$-dimensional section of $P^{n}$. The author deals with the relationship between $S$ and $\pi^{-1}(S)$, and obtains a necessary and sufficient condition to guarantee that $\pi^{-1}(S)$ is an $(n-1)$-dimensional closed submanifold (or the disjoint union of two $(n-1)$-dimensional closed submanifolds which are homeomorphic to each other), and a necessary and sufficient condition to guarantee that $\pi^{-1}(S)$ is an $(n-1)$-dimensional pseudomanifold.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.