黎志华,薛以锋.纯无限单的C*-代数通过某些C*-代数扩张的非稳定K-理论[J].数学年刊A辑,2011,32(3):277~282
纯无限单的C*-代数通过某些C*-代数扩张的非稳定K-理论
Nonstable K-theory for Extension Algebras of the Simple Purely Infinite C*-algebra by Certain C*-algebras
  
DOI:
中文关键词:  K-群  纯无限单C~*-代数  实秩零  
英文关键词:K-groups  Simple purely infinite C~*-algebra  Real rank zero  
基金项目:国家自然科学基金(No.10771069); 上海市重点学科建设基金(No.B407)资助的项目
Author NameAffiliationE-mail
LI Zhihua Department of Mathematics and Computer Science,Yichun University,Yichun 336000,Jiangxi,China. lizhihua-2006@163.com 
XUE Yifeng Department of Mathematics,East China Normal University,Shanghai 200241,China. yfxue@math.ecnu.edu.cn 
Hits: 1477
Download times: 856
中文摘要:
      设$0 \rightarrow \B \stackrel{j}{\rightarrow} E \stackrel{\pi}{\rightarrow} \A \rightarrow 0$是有单位元$C^*$-代数$E$的一个扩张, 其中$\A$是有单位元纯无限单的$C^{*}$-代数, $\B$是$E$的闭理想. 当$\B$是$E$的本性理想并且同时是单的、可分的而且具有实秩零及性质(PC)时, 证明了$K_{0}(E)=\{[p] \mid p$是$E \setminus \B$中的投影\!\}; 当$\B$是稳定$C^{*}$-代数时, 证明了对任意紧的Hausdorff空间$X$, 有$\U(C(X,E))/\U_{0}(C(X,E)) \cong K_{1}(C(X,E))$.
英文摘要:
      Let $0 \rightarrow \B \stackrel{j}{\rightarrow} E \stackrel{\pi}{\rightarrow} \A \rightarrow 0$ be a short exact sequence of the unital $C^{*}$-algebras, where $\A$ is a unital simple purely infinite $C^{*}$-algebra, $\B$ is a closed ideal of the unital $C^{*}$-algebra $E$. If $\B$ is an essential ideal of $E$ and $\B$ is also simple, separable with $\RR(\B)=0$ and (PC), then $K_{0}(E)=\{[p] \mid p$ is a projection in $E \setminus \B\}$; if $B$ is a stable $C^{*}$-algebra, then $\U(C(X,E))/\U_{0}(C(X,E)) \cong K_{1}(C(X,E))$ for any compact Hausdorff space $X$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.