徐满红,郭文彬,黄建红.有限群的弱S-拟正规嵌入子群[J].数学年刊A辑,2011,32(3):299~306
有限群的弱S-拟正规嵌入子群
Finite Groups with Weakly S-Quasinormally Embedded Subgroups
  
DOI:
中文关键词:  有限群  弱S-拟正规嵌入子群  极小子群  极大子群  群类  
英文关键词:Finite group  Weakly 5-quasinormally embedded subgroup  Minimal subgroup  Maximal subgroup  Class of groups  
基金项目:国家自然科学基金(No.11071229)资助的项目
Author NameAffiliationE-mail
XU Manhong School of Mathematical Sciences,Xuzhou Normal University,Xuzhou 221116,Jiangsu,China. moyan8022@163.com 
GUO Wenbin School of Mathematical Sciences,China,Department of Mathematics,University of Science and Technology of China,Hefei 230026 wbguo@ustc.edu.cn 
HUANG Jianhong Department of Mathematics, University of Science and Technology of China, Hefei 230026, China. jhh320@126.com 
Hits: 1568
Download times: 867
中文摘要:
      群$G$的子群$H$称为在$G$中$S$-拟正规嵌入的, 如果对于任意的素数$p \mid |H|$, $H$的Sylow $p$-子群也是$G$的某个$S$-拟正规子群的Sylow $p$-子群. 称群$G$的子群$H$在$G$中弱$S$-拟正规嵌入, 如果存在群$G$的正规子群$T$, 使得$HT \unlhd G$且$H \cap T$在$G$中是$S$-拟正规嵌入的. 研究了弱$S$-拟正规嵌入子群的性质, 给出了某些群类的新的特征, 并推广了一些已知的结论.
英文摘要:
      A subgroup $H$ of $G$ is called $S$-quasinormally embedded in $G$ if for each prime $p \mid |H|$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $S$-quasinormal subgroup of $G$. A subgroup $H$ of $G$ is called weakly $S$-quasinormally embedded in $G$ if there exists a normal subgroup $T$ of $G$ such that $HT \unlhd G$ and $H \cap T$ is $S$-quasinormally embedded in $G$. The properties of weakly $S$-quasinormally embedded subgroups are obtained. The new characterizations of some classes of finite groups are given and some previously known results are generalized.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.