王玉雷,刘合国.广义超特殊p-群的自同构群Ⅲ[J].数学年刊A辑,2011,32(3):307~318
广义超特殊p-群的自同构群Ⅲ
The Automorphism Group of a Generalized Extraspecial p-group III
  
DOI:
中文关键词:  广义超特殊p-群  中心积  辛群  自同构  
英文关键词:Generalized extraspecial p-group  Central product  Symplectic group  Automorphism  
基金项目:国家自然科学基金(No.10971054); 河南省教育厅自然科学基金(No.2011B110011); 河南工业大学科研基金(No.10XZZ011);河南工业大学引进人才专项基金(No.2009BS029)资助的项目
Author NameAffiliationE-mail
WANG Yulei Department of Mathematics,Henan University of Technology,Zhengzhou 450001,China. yulwang@yahoo.cn 
LIU Heguo Corresponding author.Department of Mathematics and Computer Science,Hubei University,Wuhan 430062,China. ghliu@hubu.edu.cn 
Hits: 1752
Download times: 912
中文摘要:
      确定了广义超特殊$p$-群$G$的自同构群的结构. 设$|G|=p^{2n+m}$, $|\zeta G|=p^m$, 其中$n \geq 1$, $m \geq 2$, ${\rm Aut}_{f}G$是${\rm Aut}\, G$中平凡地作用在${\rm Frat}\, G$上的元素形成的正规子群, 则 (1) 当$G$的幂指数是$p^m$时, (i) 如果$p$是奇素数, 那么${\rm Aut}\, G/{\rm Aut}_{f}G\cong\mathbb{Z}_{(p-1)p^{m-2}}$, 并且 ${\rm Aut}_{f}G/{\rm Inn}\, G\cong{\rm Sp}(2n,p)\times\mathbb{Z}_p$. (ii) 如果$p=2$, 那么${\rm Aut}\, G={\rm Aut}_{f}G$\ (若$m=2$)或者 ${\rm Aut}\, G/{\rm Aut}_{f}G\cong\mathbb{Z}_{2^{m-3}}\times\mathbb{Z}_2$\ (若$m \geq 3$), 并且${\rm Aut}_{f}G/{\rm Inn}\, G\cong{\rm Sp}(2n,2)\times\mathbb{Z}_2$. (2) 当$G$的幂指数是$p^{m+1}$时, (i) 如果$p$是奇素数, 那么${\rm Aut}\, G=\langle\theta\rangle\ltimes{\rm Aut}_{f}G$, 其中$\theta$的阶是$(p-1)p^{m-1}$, 且${\rm Aut}_{f}G/{\rm Inn}\, G\cong K\rtimes{\rm Sp}(2n-2,p)$, 其中$K$是$p^{2n-1}$阶超特殊$p$-群. (ii) 如果$p=2$, 那么${\rm Aut}\, G=\langle\theta_1, \theta_2\rangle\ltimes{\rm Aut}_{f}G$, 其中$\langle\theta_1, \theta_2\rangle= \langle\theta_1\rangle\times\langle\theta_2\rangle\cong\mathbb{Z}_{2^{m-2}}\times\mathbb{Z}_2$, 并且${\rm Aut}_{f}G/{\rm Inn}\, G\cong K\rtimes{\rm Sp}(2n-2,2)$, 其中$K$是$2^{2n-1}$阶初等Abel $2$-群. 特别地, 当$n=1$时, ${\rm Aut}_{f}G/{\rm Inn}\, G\cong\mathbb{Z}_{p}$.
英文摘要:
      In this paper, the automorphism group of a generalized extraspecial $p$-group $G$ is determined, where $p$ is a prime number. Assume that $|G|=p^{2n+m}$ and $|\zeta G|=p^m$, where $n \geq 1$ and $m \geq 2$. Let ${\rm Aut}_{f}G$ be the normal subgroup of ${\rm Aut}\, G$ consisting of all elements of ${\rm Aut}\, G$ which act trivially on ${\rm Frat}\, G$. Then (1) When the exponent of $G$ is equal to $p^m$, (i) If $p$ is odd, then ${\rm Aut}\, G/{\rm Aut}_{f}G\cong\mathbb{Z}_{(p-1)p^{m-2}}$ and ${\rm Aut}_{f}G/{\rm Inn}\, G\cong{\rm Sp}(2n,p)\times\mathbb{Z}_p$. (ii) If $p=2$, then ${\rm Aut}\, G={\rm Aut}_{f}G$ (when $m=2$) or ${\rm Aut}\, G/{\rm Aut}_{f}G\cong\mathbb{Z}_{2^{m-3}}\times\mathbb{Z}_2$ (when $m\geq 3$), and ${\rm Aut}_{f}G/{\rm Inn}\, G\cong{\rm Sp}(2n,2)\times\mathbb{Z}_2$. (2) When the exponent of $G$ is equal to $p^{m+1}$, (i) If $p$ is odd, then ${\rm Aut}\, G=\langle\theta\rangle\ltimes{\rm Aut}_{f}G$, where $\theta$ is of order $(p-1)p^{m-1}$, and ${\rm Aut}_{f}G/{\rm Inn}\, G\cong K\rtimes{\rm Sp}(2n-2,p)$, where $K$ is an extraspecial $p$-group of order $p^{2n-1}$. (ii) If $p=2$, then ${\rm Aut}\, G=\langle\theta_1, \theta_2\rangle\ltimes{\rm Aut}_{f}G$, where $\langle\theta_1, \theta_2\rangle=\langle\theta_1\rangle \times\langle\theta_2\rangle\cong\mathbb{Z}_{2^{m-2}}\times\mathbb{Z}_2$, and ${\rm Aut}_{f}G/{\rm Inn}\, G\cong K\rtimes{\rm Sp}(2n-2,2)$, where $K$ is an elementary abelian 2-group of order $2^{2n-1}$. In particular, ${\rm Aut}_{f}G/{\rm Inn}\, G\cong\mathbb{Z}_{p}$ when $n=1$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.