李英杰.序列[n~c]上多维除数函数的和[J].数学年刊A辑,2011,32(3):355~364
序列[n~c]上多维除数函数的和
The Sum of Multidimensional Divisor Function on a Sequence of Type[n~c]
  
DOI:
中文关键词:  除数函数  渐近公式  指数和  指数对  
英文关键词:Divisor function  Asymptotic formula  Exponential sum  Exponent pair  
基金项目:上海高校选拔培养优秀青年教师科研专项基金(No.ssc08017); 上海海洋大学博士科研启动基金资助的项目
Author NameAffiliationE-mail
LI Yingjie College of Information Technology,Shanghai Ocean University,Shanghai 201306,China. thelyj@163.com 
Hits: 1607
Download times: 825
中文摘要:
      设$[\theta]$表示$\theta$的整数部分, $k \ge 2$, $d_k (n)$为除数函数. 证明了当实数$c$满足$1 < c < \frac{3849}{3334}$时, $\sum\limits_{n \le x}d_k([n^c])$具有渐近公式, 从而改进了吕广世和翟文广的结果($1 < c < \frac{495}{433}$), 而且当$k=2$时, 实数$c$的范围可以改进到$1 < c < \frac{391}{335}$.
英文摘要:
      Let $[\theta]$ be the integral part of $\theta$ and $k \ge 2$, $d_k(n)$ denote the divisor function. In this paper it is proved that $\sum\limits_{n \le x}d_k([n^c])$ has an asymptotic formula when $1 < c < \frac{3849}{3334}$, which improves L\"u Guangshi and Zhai Wenguang's result $1 < c < \frac{495}{433}$. Moreover, if $k=2$, then the range of $c$ can be enlarged to $1 < c < \frac{391}{335}$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.