李倩,李鹏同.完全分配CSL代数上的中心化子[J].数学年刊A辑,2011,32(3):375~384
完全分配CSL代数上的中心化子
Centralizers of Completely Distributive CSL Algebras
  
DOI:
中文关键词:  完全分配CSL代数  中心化子  Jordan中心化子  Lie中心化子  
英文关键词:Completely distributive CSL algebra  Centralizer  Jordan centralizer  Lie centralizer  
基金项目:国家自然科学基金(No.10771101)资助的项目
Author NameAffiliationE-mail
LI Qian Department of Mathematics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China. muziqian@163.com 
LI Pengtong Department of Mathematics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China. pengtongli@nuaa.edu.cn 
Hits: 1149
Download times: 927
中文摘要:
      设$\mathcal L$是可分Hilbert空间上的完全分配交换子空间格, $\mathcal A$是${\rm Alg}\, \mathcal L$的子代数并且包含${\rm Alg}\, \mathcal L$的全体有限秩算子. 主要结果是: (1) $\mathcal A$上的中心化子是拟空间的; (2) ${\rm Alg}\, \mathcal L$上的Jordan中心化子是中心化子; (3) 当$\mathcal L$是套时, ${\rm Alg}\, \mathcal L$上的Lie中心化子可表示成一个中心化子与一个可加泛函之和的形式, 该泛函作用在形如$AB-BA$的算子上为零.
英文摘要:
      Let $\mathcal L$ be a completely distributive commutative subspace lattice on a separable Hilbert space, $\mathcal A$ be a subalgebra of ${\rm Alg}\, \mathcal L$ which contains all finite rank operators in ${\rm Alg}\, \mathcal L$. The main results are as follows: (1) Every centralizer of $\mathcal A$ is quasi-spatial; (2) Every Jordan centralizer of ${\rm Alg}\, \mathcal L$ must be a centralizer; (3) If $\mathcal L$ is a nest, then every Lie centralizer of ${\rm Alg}\, \mathcal L$ can be written as a sum of a centralizer and an additive functional on the nest algebra, where the additive functional annihilates operators of the form $AB-BA$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.