柳洪志,袁洪君,李梵蓓,乔节增.一类带有非牛顿位势的可压缩Navier-Stokes方程整体强解的存在性[J].数学年刊A辑,2011,32(4):407~422
一类带有非牛顿位势的可压缩Navier-Stokes方程整体强解的存在性
Global Existence of Strong Solutions to Compressible Navier-Stokes Equations with Non-Newtonian Potential
  
DOI:
中文关键词:  Navier-Stokes方程  可压缩  强解  非牛顿位势  
英文关键词:Navier-Stokes equation  Compressible  Strong solution  Non-Newtonian potential  
基金项目:国家自然科学基金(No10971080)资助的项目
Author NameAffiliationE-mail
LIU Hongzhi Institute of Mathematics, Jilin University, Changchun 130012, China
School of Statistics and Mathematics, Inner Mongolia Finance and Economics College, Huhhot 010051, China. 
school-32@163.com 
YUAN Hongjun College of Mathematics, Jilin University, Changchun 130012, China. hjy@jlu.edu.cn 
LI Fanbei School of Statistics and Mathematics, Inner Mongolia Finance and Economics College, Huhhot 010051, China. liuhz08@mails.jlu.edu.cn 
QIAO Jiezeng School of Statistics and Mathematics, Inner Mongolia Finance and Economics College, Huhhot 010051, China. nmgqjz@163.com 
Hits: 1591
Download times: 1156
中文摘要:
      主要研究了一类带有非牛顿位势的可压缩Navier-Stokes方程: $$ \rho_t+(\rho u)_x=0, & \mbox{在} \ (0,T) \times (0,1) \ \mbox{内,} (\rho u)_t+(\rho u^2)_x+\rho \Phi_x-(\mu(\rho)u_x)_x+P_x=0, & \mbox{在} \ (0,T) \times (0,1) \ \mbox{内,} \ds ((\Phi_x^2+\mu_0)^{\frac{p-2}{2}}\Phi_x)_x=4\pi g\Big(\rho-\frac{1}{|\Omega|}\int_\Omega \rho \d x\Big), & \mbox{在} \ (0,T) \times (0,1) \ \mbox{内,} $$ 其中粘性系数$\mu$依赖于密度$\rho$, $\Phi$是非牛顿位势.证明了上述问题的强解的存在性. 在相容性条件下, 得到了强解的唯一性.
英文摘要:
      The authors study a class of the isentropic compressible Navier-Stokes equations in one dimension: $$ \rho_t+(\rho u)_x=0, & \mbox{in} \ (0,T) \times (0,1), (\rho u)_t+(\rho u^2)_x+\rho \Phi_x-(\mu(\rho)u_x)_x+P_x=0, & \mbox{in} \ (0,T) \times (0,1), \ds ((\Phi_x^2+\mu_0)^{\frac{p-2}{2}}\Phi_x)_x=4\pi g\Big(\rho-\frac{1}{|\Omega|}\int_\Omega \rho \d x\Big), & \mbox{in} \ (0,T) \times (0,1), $$ where the viscosity coefficient $\mu$ depends on density $\rho$, and $\Phi$ is a non-Newtonian potential. The authors prove the existence of strong solutions for the problem and obtain the uniqueness under the compatiblity condition.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.