储昌木,唐春雷.具有凹凸非线性项和变号位势函数拟线性椭圆系统解的多重结果[J].数学年刊A辑,2011,32(4):443~458
具有凹凸非线性项和变号位势函数拟线性椭圆系统解的多重结果
Multiple Results for Quasilinear Elliptic Systems Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions
  
DOI:
中文关键词:  拟线性椭圆系统  凹凸非线性项  变号位势函数  Ekeland变分原理  山路引理  
英文关键词:Quasilinear elliptic systems  Concave-convex nonlinearities  Signchanging weight functions  Ekeland's variational principle  Mountain pass theorem  
基金项目:国家自然科学基金(No11071198)资助的项目
Author NameAffiliationE-mail
CHU Changmu School of Mathematics and Statistics,Southwest University,Chongqing 400715,China,College of Science,Guizhou University for Nationalities,Guiyang 550025,China. School of Mathematics and Statistics,China. gzmychuchangmu@sina.com 
TANG Chunlei 西南大学数学与统计学院, 重庆 400715. tangcl@swu.edu.cn 
Hits: 1714
Download times: 1053
中文摘要:
      $$ -\triangle_pu=\lambda a(x)|u|^{q-2}u+F_u(x,u,v), & x\in\Omega, -\triangle_p v=\lambda b(x)|v|^{q-2}v+F_v(x,u,v), & x\in\Omega, u=v=0, & x\in\partial\Omega $$ 的非平凡非负解或正解的多重性, 这里$\Omega \subset \mathbb{R}^{N}$是具有光滑边界$\partial\Omega$的有界域, $1 \leq q\frac{p^{*}}{p^{*}-q}$, 其中 当$N \leq p$时, $p^{*}=+\infty$, 而当$1
英文摘要:
      The multiplicity of nontrivial nonnegative or positive solutions to the following quasilinear elliptic system $$ -\triangle_pu=\lambda a(x)|u|^{q-2}u+F_u(x,u,v), & x\in\Omega, -\triangle_pv=\lambda b(x)|v|^{q-2}v+F_v(x,u,v), & x\in\Omega, u=v=0, & x\in\partial\Omega $$ is studied, where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $\partial\Omega$, $1\leq q0$ is a positive parameter; $a(x), b(x) \in L^r(\Omega)$ are allowed to change sign, $r>\frac{p^{*}}{p^{*}-q}$ such that $p^{*}=+\infty$ if $N \leq p$ and $p^{*}=\frac{Np}{N-p}$ if $1
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.