左飞,申俊丽.代数κ-拟-A类算子的Weyl定理[J].数学年刊A辑,2011,32(4):459~466
代数κ-拟-A类算子的Weyl定理
Weyl’s Theorem for Algebraically k-Quasi-Class A Operators
  
DOI:
中文关键词:  Weyl定理  Browder定理  代数κ-拟-A类算子  a-Weyl定理  a-Browder定理  
英文关键词:
基金项目:教育部科技司(No208081)资助的项目
Author NameAffiliationE-mail
ZUO Fei College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,Henan,China. zuofei2008@sina.com 
SHEN Junli Department of Mathematics,Xinxiang University,Xinxiang 453000,China. shenjunli58@sina.com 
Hits: 1671
Download times: 1067
中文摘要:
      若$T$或$T^{*}$是无穷维可分的Hilbert空间$H$上的代数$k$-拟-\!$A$类算子, 则Weyl定理对任意的$f \in H(\sigma(T))$成立, 其中 $H(\sigma(T))$为$\sigma (T)$ 的开邻域上解析函数的全体.若$T^{*}$是代数$k$-拟-\!$A$类算子, 则$a$-Weyl定理对$f(T)$成立. 还证明了若$T$或$T^{*}$是代数$k$-拟-\!$A$类算子, 则Weyl谱与本质近似点谱的谱映射定理对$f(T)$成立.
英文摘要:
      If $T$ or $T^{*}$ is an algebraically $k$-quasi-class $A$ operator acting on an infinitely dimensional separable Hilbert space $H$, then it is proved that the Weyl's theorem holds for every $f \in H (\sigma(T))$, where $H (\sigma(T))$ denotes the set of all analytic functions on an open neighborhood of $\sigma(T).$ Moreover, if $T^{*}$ is an algebraically $k$-quasi-class $A$ operator, then the $a$-Weyl's theorem holds for $f(T)$. Also, if $T$ or $T^{*}$ is an algebraically $k$-quasi-class $A$ operator, then the spectral mapping theorems for both the Weyl's spectrum and the essential approximate point spectrum of $T$ are established for every $f(T)$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.