洪勇.一类带齐次核的奇异重积分算子的范数及其应用[J].数学年刊A辑,2011,32(5):599~606
一类带齐次核的奇异重积分算子的范数及其应用
On the Norm of Singular Multiple Integral Operator with Homogeneous Kernel and Its Application
  
DOI:
中文关键词:  对称齐次核  奇异重积分算子  范数  
英文关键词:Symmetric and homogeneous kernel  Singular multiple integral operator  Norm  
基金项目:广东省高校自然科学研究重点项目(No.052026)资助的项目
Author NameAffiliationE-mail
HONG Yong College of Mathematics and Computational Science,Guangdong University of Business Studies,Guangzhou 510320,China. hongyong59@sohu.com 
Hits: 1309
Download times: 806
中文摘要:
      设核函数$K(u,v)$具有对称性和齐次性, 对如下定义的奇异重积分算子$T$: $$ (Tf)(y)=\int_{\mathbb{R}_{+}^{n}}K(\|x\|_{\alpha},\|y\|_{\alpha})f(x)\rmd x, \quad y\in \mathbb{R}_{+}^{n}, $$ 其中$\|x\|_{\alpha}=(x_{1}^{\alpha}+\cdots+x_{n}^{\alpha})^{\frac{1}{\alpha}}\ (\alpha>0)$, 研究了$T$的范数及其应用.
英文摘要:
      For a singular multiple integral operator $T$ with a symmetric and homogemeous kernel $K(u,v)$ defined by $$ (Tf)(y)=\int_{\mathbb{R}_{+}^{n}}K(\|x\|_{\alpha},\|y\|_{\alpha})f(x)\rmd x,\quad y\in \mathbb{R}_{+}^{n}, $$ where $\|x\|_{\alpha}=(x_{1}^{\alpha}+\cdots+x_{n}^{\alpha})^{\frac{1}{\alpha}}\ (\alpha>0)$, the norm of $T$ is given, and its applications are discussed.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.