刘太顺,卢金,王建飞.多复变数准凸映射的偏差定理[J].数学年刊A辑,2011,32(5):607~612
多复变数准凸映射的偏差定理
Distortion Theorems of Quasi-convex Mappings in Several Complex Variables
  
DOI:
中文关键词:  准凸映射  偏差定理  增长定理  Banach空间  
英文关键词:Quasi-convex mappings  Distortion theorem  Growth theorem  Banach space  
基金项目:国家自然科学基金(No.10971063,No.11001246,No.11031008,No.11101139); 浙江省自然科学基金(No.D7080080,No.Y6090694,No.Y6110260,No.Y6110053,No.Y6090036,No.Y6100219)资助的项目
Author NameAffiliationE-mail
LIU Taishun Department of Mathematics,Huzhou Teachers College,Huzhou 313000,Zhejiang,China. lts@ustc.edu.cn 
LU Jin Department of Mathematics,Huzhou Teachers College,Huzhou 313000,Zhejiang,China. lujin@mail.ustc.edu.cn 
WANG Jianfei College of Mathematics Physics and Information Technology,Zhejiang Normal University,Jinhua 321004,China. wangjf@mail.ustc.edu.cn 
Hits: 1406
Download times: 872
中文摘要:
      首先给出了 ${\mathbb{C}}^n$ 中单位多圆柱 $D^n$ 上 准凸映射 $f$ 关于Jacobin 矩阵 $J_f(z)$ 的偏差定理. 该定理是单位圆盘凸函数的偏差定理在多复变中的推广. 其次得到了 Banach 空间单位球上准凸映射的偏差定理的上界. 最后 给出了关于准凸映射偏差定理的两个猜想.
英文摘要:
      Firstly, the authors are concerned with the distortion theorem for the Jacobian matrix $J_f(z)$ in the case of quasi-convex mapping $f$ on the unit polydisc $D^n$ in ${\mathbb{C}}^n$. The result is a new generalization to the case of several complex variables of the well-known distortion theorem for convex functions of the unit disc. Secondly, the authors obtain the upper bound estimate of the distortion theorem for quasi-convex mappings on the unit ball of a complex Banach space. Finally, two conjectures are given for quasi-convex mappings on the unit polydisc as well as on the unit ball of a complex Banach space.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.