何太平,罗宏.常曲率空间中具正Ricci曲率的子流形[J].数学年刊A辑,2011,32(6):679~686 |
常曲率空间中具正Ricci曲率的子流形 |
Submanifolds with Positive Ricci Curvature in the Constant Curvature Space |
|
DOI: |
中文关键词: Ricci曲率 伪脐 直积 |
英文关键词:Ricci curvature Pseudo-umbilicus Direct product |
基金项目:国家自然科学基金(No11071177)资助的项目 |
|
Hits: 1099 |
Download times: 647 |
中文摘要: |
设$S^{n+p}(1)$是一单位球面,
$M^{n}$ 是浸入$S^{n+p}(1)$的具有非零平行平均曲率向量的$n$维紧致子流形.
证明了当$n \geq 4$, $p \geq
2$时, 如果$M^{n}$的Ricci曲率不小于$(n-2)(1+H^2)$, 则$M^{n}$
是全脐的或者$M^{n}$的Ricci曲率等于$(n-2)(1+H^2)$, 进而 $M^{n}$的几何分类被完全给出. |
英文摘要: |
Let $S^{n+p}(1)$ be a unit sphere,
$M^{n}$ an $n$-dimensional compact submanifold immersed in $S^{n+p}(1)$ with non-zero parallel mean curvature vector
. It is proved that when $n \geq 4$ and $p \geq
2$, if the Ricci curvature of $M^{n}$ is not less than $(n-2)(1+H^2)$, then $M^{n}$
is totally umbilical, or the Ricci curvature of $M^{n}$ equals to $(n-2)(1+H^2)$, and
so the geometry classification of $M^{n}$ is given. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|