Apr.16 Wed.2025
何太平,罗宏.常曲率空间中具正Ricci曲率的子流形[J].数学年刊A辑,2011,32(6):679~686
常曲率空间中具正Ricci曲率的子流形
Submanifolds with Positive Ricci Curvature in the Constant Curvature Space
  
DOI:
中文关键词:  Ricci曲率  伪脐  直积  
英文关键词:Ricci curvature  Pseudo-umbilicus  Direct product  
基金项目:国家自然科学基金(No11071177)资助的项目
Author NameAffiliationE-mail
HE Taiping College of Mathematics and Software Science,Sichuan Normal University,Chengdu 610066,China. hetaiping86@hotmail.com 
LUO Hong College of Mathematics and Software Science,Sichuan Normal University,Chengdu 610066,China. lhscnu@163.com 
Hits: 1099
Download times: 647
中文摘要:
      设$S^{n+p}(1)$是一单位球面, $M^{n}$ 是浸入$S^{n+p}(1)$的具有非零平行平均曲率向量的$n$维紧致子流形. 证明了当$n \geq 4$, $p \geq 2$时, 如果$M^{n}$的Ricci曲率不小于$(n-2)(1+H^2)$, 则$M^{n}$ 是全脐的或者$M^{n}$的Ricci曲率等于$(n-2)(1+H^2)$, 进而 $M^{n}$的几何分类被完全给出.
英文摘要:
      Let $S^{n+p}(1)$ be a unit sphere, $M^{n}$ an $n$-dimensional compact submanifold immersed in $S^{n+p}(1)$ with non-zero parallel mean curvature vector . It is proved that when $n \geq 4$ and $p \geq 2$, if the Ricci curvature of $M^{n}$ is not less than $(n-2)(1+H^2)$, then $M^{n}$ is totally umbilical, or the Ricci curvature of $M^{n}$ equals to $(n-2)(1+H^2)$, and so the geometry classification of $M^{n}$ is given.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.