王於平,杨传富,黄振友.一类奇型Sturm-Liouville算子的逆问题[J].数学年刊A辑,2011,32(6):699~704
一类奇型Sturm-Liouville算子的逆问题
Inverse Problem for a Class of Singular Sturm-Liouville Operators
  
DOI:
中文关键词:  特征值  势函数  奇型Sturm-Liouville算子  逆问题  
英文关键词:Eigenvalue  Potential  Singular Sturm-Liouville operator  Inverse problem  
基金项目:江苏省自然科学基金(NoBK2010489); 南京理工大学卓越计划一紫金之星(NoAB41366)资助的项目
Author NameAffiliationE-mail
WANG Yuping Department of Applied Mathematics,School of Science,Nanjing Forestry University,Nanjing 210037,China. ypwang@njfu.com.cn 
YANG Chuanfu Department of Applied Mathematics,Nanjing University of Science and Technology,Nanjing 210094,China. chuanfuyang@tom.com 
HUANG Zhenyou Department of Applied Mathematics,Nanjing University of Science and Technology,Nanjing 210094,China. zyhuangh@yahoo.com 
Hits: 1280
Download times: 777
中文摘要:
      研究了奇型 ~Sturm-Liouville 算子的逆问题. 对于固定的 ~$n\in\mathbb{N}$, 证明了 Sturm-Liouville 问题(1.3)--(1.5)的 第 ~$n$ 个特征值 ~$\lambda_{n}(q,H)$ 关于 ~$H$ 是严格单调增加的, 及一组不同边界条件下的第 ~$n$ 个特征值的谱集合 ~$\{\lambda_{n}(q,H_k)\}_{k=1}^{+\infty}$ 能够唯一确定 ~$(0,\pi )$ 上的势函数 ~$q(x)$.
英文摘要:
      The authors discuss the inverse problem for a singular Sturm-Liouville operators. For a fixed $n\in\mathbb{N}$, it is shown that the $n$-th eigenvalue $\lambda_{n}(q,H)$ of the Sturm-Liouville problems (1.3)--(1.5) is strictly increasing in $H$, and the potential $q(x)$ on the interval $(0,\pi)$ can be uniquely determined by the spectrum set of $\{\lambda_{n}(q,H_k)\}_{k=1}^{+\infty}$ of the $n$-th eigenvalue for different boundary conditions.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.