李伟平,王天泽.3个素数平方和的非线性型的整数部分[J].数学年刊A辑,2011,32(6):753~762
3个素数平方和的非线性型的整数部分
Integral Part of a Nonlinear Form with Three Squares of Primes
  
DOI:
中文关键词:  素数  非线性型  Davenport-Heilbronn方法  
英文关键词:Prime  Nonlinear form  Davenport-Heilbronn method  
基金项目:国家自然科学基金(No11071070); 河南省教育厅自然科学研究计划(No2011B110002)资助的项目
Author NameAffiliationE-mail
LI Weiping Department of Mathematics and Information Science,Henan University of Economics and Law,Zhengzhou 450002.China. wpli72@yahoo.com.cn 
WANG Tianze School of Mathematics and Information Science, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, China. wtz@ncwu.edu.cn 
Hits: 1334
Download times: 819
中文摘要:
      假设$\lambda, \mu, \nu$是不全为负的非零实数,$\lambda$是 无理数,$k$是正整数,则存在无穷多素数$p_1, p_2, p_3, p$,使得 $$ [\lambda p_1^2+\mu p_2^2+\nu p_3^2]=kp. $$ 特别地,$[\lambda p_1^2+\mu p_2^2+\nu p_3^2]$表示无穷多素数.
英文摘要:
      It is shown that if $\lambda,\mu,\nu$ are non-zero real numbers, at least one of which is non-negative, $\lambda$ is irrational, and $k$ is a positive integer, then there exist infinite primes $p_1, p_2, p_3, p$, such that $$ [\lambda p_1^2+\mu p_2^2+\nu p_3^2]=kp. $$ In particular, $[\lambda p_1^2+\mu p_2^2+\nu p_3^2]$ represents infinite primes.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.