陈玲,韦来生.线性模型中回归系数和误差方差的同时Bayes估计的优良性[J].数学年刊A辑,2011,32(6):763~774
线性模型中回归系数和误差方差的同时Bayes估计的优良性
Superiorities of Simultaneous Bayes Estimation of Regression Coefficients and Error-Variance in Linear Model
  
DOI:
中文关键词:  线性模型  Bayes估计  最小二乘估计  均方误差(矩阵)准则  Bayes Pitman closeness准则  
英文关键词:Linear model  Bayes estimation  Least squares estimation  Mean square error(matrix) criterion  Bayes Pitman closeness criterion  
基金项目:国家自然科学基金(No11071232); 安徽大学青年科研基金(No2011KJQN1002)资助的项目
Author NameAffiliationE-mail
CHEN Ling Department of Statistics and Finance, University of Science and Technology of China, Hefei 230026, China
School of Mathematical Science, Anhui University, Hefei 230039, China. 
chling@mail.ustc.edu.cn 
WEI Laisheng Department of Statistics and Finance, University of Science and Technology of China, Hefei 230026, China. lwei@ustc.edu.cn 
Hits: 1225
Download times: 864
中文摘要:
      在线性模型中回归系数与误差方差具有正态-逆Gamma先验时, 导出了回归系数与 误差方差的同时Bayes估计. 在均方误差矩阵准则和 Bayes Pitman closeness 准则下, 研究了回归系数的Bayes估计相对于最小二乘(LS)估计的优良性, 还讨论了误差方差的Bayes估计在均方误差准则下相对于LS估计的优良性.
英文摘要:
      The simultaneous Bayes estimators of regression coefficients and error-variance are derived in linear model under the normal-invert Gamma prior distributions. The superiorities of the Bayes estimator over the least squares (LS) estimator for regression coefficients are investigated in terms of the mean square error matrix criterion and Bayes Pitman closeness criterion, and the superiority of the Bayes estimator of error-variance over LS estimator is also discussed under the mean square error criterion.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.