王灯山,陈静.新的变系数可积耦合非线性Schr(o)dinger方程及其孤子解[J].数学年刊A辑,2012,33(2):149~160
新的变系数可积耦合非线性Schr(o)dinger方程及其孤子解
New Integrable Variable-Coefficient Coupled Nonlinear Schr(o)dinger Equations and Their Soliton Solutions
  
DOI:
中文关键词:  延拓结构  Lax对  Hirota方法  向量孤子  耦合非线性Schr(o)dinger方程
英文关键词:Prolongation structure, Lax pair, Hirota’s method, Vector solitons, Coupled nonlinear Schr¨odinger equation
基金项目:国家自然科学基金,北京市教育委员会科技发展计划基金
Author NameAffiliationE-mail
WANG Dengshan School of Science, Beijing Information Science and Technology University, Beijing 100192, china wangdsh1980@yahoo.com.cn 
CHEN Jing School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081, china chenjingma@cufe.edu.cn 
Hits: 2365
Download times: 879
中文摘要:
      基于延拓结构和Hirota双线性方法研究了广义的变系数耦合非线性Schr(o)dinger方程.首先导出了3组新的变系数可积耦合非线性Schr(o)dinger方程及其线性谱问题(Lax对),然后利用Hirota双线性方法给出了它们的单、双向量孤子解.这些向量孤子解在光孤子通讯中有重要的应用.
英文摘要:
      A generalized variable-coefficient coupled nonlinear Schr¨odinger equation is studied by the prolongation structure and the Hirota’s method. Three new integrable variablecoefficient coupled nonlinear Schr¨odinger equations and their linear spectral problems (Lax pairs) are derived. Then the one- and two-vector soliton solutions to these integrable equations are obtained by means of Hirota’s method. These vector solutions may have important applications in the optical soliton communications.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.