陈登远,朱晓英,张建兵,孙莹莹,施英.等谱AKNS方程的新孤子解[J].数学年刊A辑,2012,33(2):205~216
等谱AKNS方程的新孤子解
New Soliton Solutions to Isospectral AKNS Equations
  
DOI:
中文关键词:  AKNS方程  双线性导数  新多孤子解
英文关键词:AKNS equation, Bilinear derivative, New multi-soliton solution
基金项目:国家自然科学基金,上海市重点学科建设基金,江苏省高校自然科学基金
Author NameAffiliationE-mail
CHEN Dengyuan Department of Mathematics, Shanghai University, Shanghai 200444, china dychen@mail.shu.edu.cn 
ZHU Xiaoying Department of Mathematics, College of Sciences, Shandong Jianzhu University, Jinan 250101, china zxy8d0536@shu.edu.cn 
ZHANG Jianbing School of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, china jianbingzhang@yahoo.cn 
SUN Yingying Department of Mathematics, Shanghai University, Shanghai 200444, china yingy.sun@yahoo.com.cn 
SHI Ying Department of Mathematics, Shanghai University, Shanghai 200444, china shiying0707@shu.edu.cn 
Hits: 1800
Download times: 714
中文摘要:
      给出2阶AKNS方程的两类双线性导数方程,利用扰动展开与截断技术,分别导出这两类方程的多孤子解,并将所得结果推广到AKNS方程族的情形.关于广义双线性导数方程孤子解的结果是新的.
英文摘要:
      Two kinds of bilinear derivative equations of second-order AKNS equations are given. By using the perturbation expansion and the truncated technique, the multi-soliton solutions to these two kinds of bilinear derivative equations are derived and extended to the AKNS hierarchy. The results about the soliton solutions to the generalized bilinear derivative equations are new.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.