陈美茹,陈宗煊.有穷级整函数的差分多项式的性质[J].数学年刊A辑,2012,33(3):359~374 |
有穷级整函数的差分多项式的性质 |
Properties of Difference Polynomials of Entire Functions with Finite Order |
|
DOI: |
中文关键词: 整函数 差分多项式 有穷级 唯一性 |
英文关键词:Entire function, Difference polynomial, Finite order, Uniqueness |
基金项目:国家自然科学基金 |
|
Hits: 1166 |
Download times: 994 |
中文摘要: |
考虑了差分多项式f(z)n(f(z)m-1)dΠj=1f(z+cj)vj-α(z)的零点问题,其中f(z)是有穷级的超越整函数.cj(cj≠0,j=1,…,d)是互相判别的常数,n,m,d,vj(j=1,…,d)∈N+,α(z)是f(z)的小函数.还讨论了差分多项式的唯一性问题. |
英文摘要: |
The authors consider the zeros of difference polynomial
$$
f(z)^{n}(f(z)^{m}-1)\prod\limits_{j=1}^{d}f(z+c_{j})^{ c_{j} \nu_{j}}-\alpha(z),
$$
where $f(z)$ is a transcendental entire function with finite order, $c_{j}\ (c_{j} \neq 0,\ j=1,\cdots, d)
$ are distinct constants, $n, m, d,\nu_{j}\ (j=1,\cdots, d)\in\mathbb{N_{+}}$, $\alpha(z)$ is a small function with respect to $f(z)$.
The uniqueness problem on difference polynomials is also discussed. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|