叶晓峰.几类交换子在广义Morrey空间上的估计[J].数学年刊A辑,2012,33(3):375~382
几类交换子在广义Morrey空间上的估计
Estimate of Some Kind of Commutators on Generalized Morrey Spaces
  
DOI:
中文关键词:  交换子  奇异积分算子  极大算子  Riesz积分位势算子  广义Morrey空间
英文关键词:Commutator, Singular integral operator, Maximal operator, Riesz potential operator, Generalized Morrey space
基金项目:国家自然科学基金
Author NameAffiliationE-mail
YE Xiaofeng Department of Mathematics and Information Science, East China Jiaotong University, Nanchang 330013, china xiaofye@ecjtu.jx.cn 
Hits: 1174
Download times: 1166
中文摘要:
      设ωi(x,T)(i=1,2)是Rn×R+上的可测正函数,当(ω1,ω2)∈So,n时,由BMO函数与极大算子M生成的交换子,是从广义Morrey空间Lp,ω1(Rn)到Lp,ω2(Rn)的有界算子.对于奇异积分算子T以及Riesz积分位势算子Iα生成的交换子,也得到了相似的有界性结果.该结论推广了Mizuhara在广义Morrey空间上的相关结论.
英文摘要:
      Let $\omega_{i}(x,r)\ (i=1,2)$ be a positive measurable function in $\mathbb{R}^{n}\times \mathbb{R}^{+}$. If $(\omega_{1},\omega_{2})\in {\mathcal{S}}_{0,n}$, then the commutators generated by the BMO function and maximal operators $M$ are bounded from $L^{p,\omega_{1}}(\mathbb{R}^{n})$ to $L^{p,\omega_{2}}(\mathbb{R}^{n})$. Similarly, the commutators generated by the singular integral operator $T$ and the Riesz potential operator $I_\alpha$ are also bounded on generalized Morrey spaces. All the results generalize the corresponding results of Mizuhara on the generalized Morrey spaces.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.