李红伟,李锋,金银来.一类具有13个参数的7次系统的极限环分支[J].数学年刊A辑,2012,33(4):415~424
一类具有13个参数的7次系统的极限环分支
Bifurcation of Limit Cycles in a Septic System with 13 Parameters
  
DOI:
中文关键词:  幂零奇点  中心-焦点问题  极限环分支  积分因子  拟Lyapunov常数
英文关键词:Nilpotent singular point, Center-focus problem, Bifurcation of limit cycles, Integrating factor, Quasi-Lyapunov constant
基金项目:国家自然科学基金(No.11071222);山东省自然科学基金(No.Y2008E22)资助的项目
Author NameAffiliationE-mail
LI Hongwei Department of Mathematics,School of Science,Linyi University,Linyi 276005, Shandong,china hongweifx@163.com 
LI Feng Department of Mathematics,School of Science,Linyi University,Linyi 276005, Shandong,china lf0539@126.com 
JIN Yinlai Department of Mathematics,School of Science,Linyi University,Linyi 276005, Shandong,china jinyinlai@lyu.edu.cn 
Hits: 1518
Download times: 742
中文摘要:
      研究了一类具有幂零奇点的7次多项式微分系统的极限环分支与中心问题.借助于数学软件MATHEMATICA,推导出系统在原点的前14个拟Lyapunov常数,从而得到了系统的原点为中心的充要条件,证明了系统在3阶幂零奇点处可以分支出14个极限环,给出了7次李雅谱诺夫系统在3阶幂零奇点处的环性数的下界.
英文摘要:
      In this paper, the bifurcation of limit cycles and the center conditions of a class of septic polynomial differential systems with nilpotent singular points are investigated. With the help of the mathematical software MATHEMATICA, the first 14 quasi-Lyapunov constants at the origin of the system are deduced. As a result, necessary and sufficient conditions for the origin of the system to be a center are obtained. The result that there exist 14 limit cycles created from the three-order nilpotent singular point is also proved. Moreover, a lower bound of cyclicity of three-order nilpotent singular point for septic Lyapunov systems is given.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.