| 张学军,熊东红,吴燕.多复变μ-Bloch空间上Gleason问题的可解性[J].数学年刊A辑,2012,33(4):425~432 |
| 多复变μ-Bloch空间上Gleason问题的可解性 |
| Solvability of Gleason’s Problem on μ-Bloch Spaces of Several Complex Variables |
| |
| DOI: |
| 中文关键词: μ-Bloch空间 Gleason问题 可解性 |
| 英文关键词:$\mu$-Bloch space, Gleason's problem, Solvability |
| 基金项目:湖南省教育厅重点基金(No.10A074)资助的项目 |
|
| Hits: 1737 |
| Download times: 800 |
| 中文摘要: |
| 设B和U~n分别表示C~n中单位球和多圆柱,并设μ是[0,1]上一个正规函数.对任意给定的b∈B,证明了Gleason问题(B,b,β_μ)是可解的,同时也证明了Gleason问题(U~n,0,β_μ)也是可解的. |
| 英文摘要: |
| Let $B$ and $U^{n}$ be the unit ball and the polydisc in ${\bf C}^{n}$, respectively, and
$\mu$ be a normal function on $[0,1]$. In
this paper, the authors prove that the
Gleason's problem $(B,b, \beta_{\mu})$ is solvable for any given $b\in B$. At the same time, the authors prove that the
Gleason's problem $(U^{n},0, \beta_{\mu})$ is also solvable. |
| View Full Text View/Add Comment Download reader |
| Close |
|
|
|
|
|