张学军,熊东红,吴燕.多复变μ-Bloch空间上Gleason问题的可解性[J].数学年刊A辑,2012,33(4):425~432
多复变μ-Bloch空间上Gleason问题的可解性
Solvability of Gleason’s Problem on μ-Bloch Spaces of Several Complex Variables
  
DOI:
中文关键词:  μ-Bloch空间  Gleason问题  可解性
英文关键词:$\mu$-Bloch space, Gleason's problem, Solvability
基金项目:湖南省教育厅重点基金(No.10A074)资助的项目
Author NameAffiliationE-mail
ZHANG Xuejun College of Mathematics and Computer Science,Hunan Normal University, Changsha 410081,china xuejuinttt@263.net 
XIONG Donghong College of Mathematics and Computer Science,Hunan Normal University, Changsha 410081,china 359570667@qq.con 
WU Yan College of Mathematics and Computer Science,Hunan Normal University, Changsha 410081,china 25235861@qq.com 
Hits: 1657
Download times: 725
中文摘要:
      设B和U~n分别表示C~n中单位球和多圆柱,并设μ是[0,1]上一个正规函数.对任意给定的b∈B,证明了Gleason问题(B,b,β_μ)是可解的,同时也证明了Gleason问题(U~n,0,β_μ)也是可解的.
英文摘要:
      Let $B$ and $U^{n}$ be the unit ball and the polydisc in ${\bf C}^{n}$, respectively, and $\mu$ be a normal function on $[0,1]$. In this paper, the authors prove that the Gleason's problem $(B,b, \beta_{\mu})$ is solvable for any given $b\in B$. At the same time, the authors prove that the Gleason's problem $(U^{n},0, \beta_{\mu})$ is also solvable.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.