王於平,黄振友,杨传富.边界条件含有特征参数的Sturm-Liouville算子的唯一性定理[J].数学年刊A辑,2012,33(4):441~448
边界条件含有特征参数的Sturm-Liouville算子的唯一性定理
A Uniqueness Theorem for Sturm-Liouville Operators with Eigenparameter in Boundary Conditions
  
DOI:
中文关键词:  唯一性定理  Sturm-Liouville问题  第n特征值  参数边界条件
英文关键词:Uniqueness theorem, Sturm-Liouville problem, n-th eigenvalue, Eigenparameter dependent on boundary condition
基金项目:国家自然科学基金(No.11171152);江苏省自然科学基金(No.BK2010489)资助的项目
Author NameAffiliationE-mail
WANG Yuping Department of Applied Mathematics,College of Sciences,Nanjing Forestry University,Nanjing 210037,china ypwang@njfu.com.cn 
HUANG Zhenyou Department of Applied Mathematics,College of Sciences,Nanjing University of Science and Technology,Nanjing 210094,china zyhuangh@yahoo.com 
YANG Chuanfu Department of Applied Mathematics,College of Sciences,Nanjing University of Science and Technology,Nanjing 210094,china chuanfuyang@tom.com 
Hits: 1323
Download times: 725
中文摘要:
      建立了一类Sturm-Liouville问题的唯一性定理.对于固定的n∈Z,证明了该Sturm-Liouville问题的第n个特征值λn(q,a)关于a是严格单调的.对不同系数的ak,如果能够测得第n个特征值的谱集合{λn(q,ak)}k=1+∞,则谱集合{λn(q,ak)}k=1+∞能够唯一确定[0,π]上的势函数q(x).
英文摘要:
      This paper establishes a uniqueness theorem for a kind of Sturm-Liouville problem. For a fixed index $n\ (n\in\bf{\mathbb Z})$, it is shown that the $n$-th eigenvalue $\lambda_{n}(q, a)$ of the Sturm-Liouville problem is strictly monotonous in $a$. If the spectral set $\{\lambda_{n}(q,a_k)\}_{k=1}^{+\infty}$ can be measured for distinct $a_k$, then the potential $q(x)$ on the interval $[0,\pi]$ can be uniquely determined by the spectral set $\{\lambda_{n}(q,a_k)\}_{k=1}^{+\infty}$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.