詹华税.拟线性退化抛物方程Cauchy问题的解[J].数学年刊A辑,2012,33(4):449~460
拟线性退化抛物方程Cauchy问题的解
Solutions to the Cauchy Problem of a Quasilinear Degenerate Parabolic Equation
  
DOI:
中文关键词:  退化抛物方程  熵解  Cauchy问题  爆破  强解
英文关键词:Degenerate parabolic equation, Entropy solution, Cauchy problem, Blow-up, Strong solution
基金项目:福建省自然科学基金(No.2009J01009);集美大学潘金龙科学基金(No.ZC2010019)资助的项目
Author NameAffiliationE-mail
ZHAN Huashui School of Sciences,Jimei University,Xiamen 361021,Pujian,china hszhan@jmu.edu.cn 
Hits: 1228
Download times: 786
中文摘要:
      对来自金融数学领域的方程xxu+uyu-tu=c(x,y,t,u),(x,y,t)∈QT=R2×[0,T)的Cauchy问题,给出了一种新的熵解的定义,得到了其适定性结果.可以证明所得到的解还是强解,即方程中所出现的各阶偏导数几乎处处连续.最后讨论了解的爆破性质以及与解的间断点相关的几何性质.
英文摘要:
      The paper gives a new definition of the entropy solution to the Cauchy problem of the following equation coming from finance mathematics: \partial_{xx}u+u\partial_{y}u-\partial_{t}u=c(x,y,t,u), \quad (x,y,t)\in Q_T= \mathbb{R}^{2}\times[0,T) and gets its well-posedness. Moreover, it can be proved that this solution is a strong solution, which means all the partial derivatives emerging in the equation are almost everywhere continuous in $Q_{T}$. At the same time, the blow-up phenomena of the solutions and the geometrical properties of the jump points of the solutions are discussed.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.