詹华税.拟线性退化抛物方程Cauchy问题的解[J].数学年刊A辑,2012,33(4):449~460 |
拟线性退化抛物方程Cauchy问题的解 |
Solutions to the Cauchy Problem of a Quasilinear Degenerate Parabolic Equation |
|
DOI: |
中文关键词: 退化抛物方程 熵解 Cauchy问题 爆破 强解 |
英文关键词:Degenerate parabolic equation, Entropy solution, Cauchy problem,
Blow-up, Strong solution |
基金项目:福建省自然科学基金(No.2009J01009);集美大学潘金龙科学基金(No.ZC2010019)资助的项目 |
|
Hits: 1228 |
Download times: 786 |
中文摘要: |
对来自金融数学领域的方程xxu+uyu-tu=c(x,y,t,u),(x,y,t)∈QT=R2×[0,T)的Cauchy问题,给出了一种新的熵解的定义,得到了其适定性结果.可以证明所得到的解还是强解,即方程中所出现的各阶偏导数几乎处处连续.最后讨论了解的爆破性质以及与解的间断点相关的几何性质. |
英文摘要: |
The paper gives a new definition of the entropy solution to the
Cauchy problem of the following equation coming from finance mathematics:
\partial_{xx}u+u\partial_{y}u-\partial_{t}u=c(x,y,t,u), \quad (x,y,t)\in Q_T=
\mathbb{R}^{2}\times[0,T)
and gets its well-posedness. Moreover, it can be proved that this
solution is a strong solution, which means all the partial
derivatives emerging in the equation are almost everywhere
continuous in $Q_{T}$. At the same time, the blow-up phenomena of
the solutions and the geometrical properties of the jump points of
the solutions are discussed. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|