张贵洲,王维克.具超音速边界可压Navier-Stokes方程解的指数衰减[J].数学年刊A辑,2013,34(1):13~28
具超音速边界可压Navier-Stokes方程解的指数衰减
Exponential Decay Solutions to the Compressible Navier-Stokes Equations with a Supersonic Boundary
  
DOI:
中文关键词:  Navier-Stokes方程, 初边值问题, 指数衰减, 加权能量方法
英文关键词:Navier-Stokes equation, Initial-boundary value problem, Exponential decay, Weighted energy method
基金项目:国家自然科学基金 (No.10171033, No.11001132)
Author NameAffiliationE-mail
ZHANG Guizhou Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Applied Mathematica, Nanjing University of Science and Technology, Nanjing 210094, China. 
zgz7246@sina.com 
WANG Weike Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China. wkwang@sjtu.edu.cn 
Hits: 2808
Download times: 1524
中文摘要:
      考虑了二维空间上具超音速物理边界的可压Navier-Stokes方程的初边值问题.给定常数平衡态$(\rho^{\ast},0)$,得到了所考虑问题解的整体存在性. 在平衡态附近的小扰动下, 利用加权能量估计方法得到解的指数衰减性.
英文摘要:
      This paper considers an initial-boundary value problem ofcompressible Navier-Stokes equations with a supersonic physicalboundary in two dimensions. Given a constant equilibrium state$(\rho^{\ast},0)$, the authors construct the global existence of solutions.By using weighted energy estimates, it is shown that the solutionconverges to the equilibrium state with an exponential rate when theperturbations are sufficiently small.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.