张存华.种群动力学中椭圆系统在零解处的分支正解[J].数学年刊A辑,2013,34(2):129~138 |
种群动力学中椭圆系统在零解处的分支正解 |
Positive Solutions Bifurcating from Zero Solution ofan Elliptic System in Population Dynamics |
|
DOI: |
中文关键词: 广义Lotka-Volterra竞争反应扩散系统, 交错扩散, 正解, 稳态分支, 稳定性 |
英文关键词:Generalized Lotka-Volterra competitive reaction-diffusion system,
Cross-diffusion, Positive solution, Steady-state bifurcation, Stability |
基金项目:国家自然科学基金 (No.10961017, No.11261028) |
|
Hits: 4687 |
Download times: 4250 |
中文摘要: |
考虑齐次Dirichlet边界条件下具有交错扩散压力的广义Lotka-Volterra两种群竞争反应扩散稳态系统.
首先借助Lyapunov-Schmidt约化方法考虑了系统在零解处小分支正解的存在性,
然后借助标准的线性化方法研究了这些分支正解的稳定性. |
英文摘要: |
A strongly coupled elliptic system under the homogeneous Dirichlet boundary
condition, denoting the steady-state system of the generalized two-species Lotka-Volterra
competition reaction-diffusion system with cross-diffusion pressure, is considered. By applying
the Lyapunov-Schmidt reduction method, the existence of small positive solutions
bifurcating from the zero solution is obtained and the stability of these positive bifurcating
solutions is also considered according to the standard linearized method. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|