张存华.种群动力学中椭圆系统在零解处的分支正解[J].数学年刊A辑,2013,34(2):129~138
种群动力学中椭圆系统在零解处的分支正解
Positive Solutions Bifurcating from Zero Solution ofan Elliptic System in Population Dynamics
  
DOI:
中文关键词:  广义Lotka-Volterra竞争反应扩散系统, 交错扩散, 正解, 稳态分支, 稳定性
英文关键词:Generalized Lotka-Volterra competitive reaction-diffusion system, Cross-diffusion, Positive solution, Steady-state bifurcation, Stability
基金项目:国家自然科学基金 (No.10961017, No.11261028)
Author NameAffiliationE-mail
ZHANG Cunhua Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China. chzhang72@163.com 
Hits: 4687
Download times: 4250
中文摘要:
      考虑齐次Dirichlet边界条件下具有交错扩散压力的广义Lotka-Volterra两种群竞争反应扩散稳态系统. 首先借助Lyapunov-Schmidt约化方法考虑了系统在零解处小分支正解的存在性, 然后借助标准的线性化方法研究了这些分支正解的稳定性.
英文摘要:
      A strongly coupled elliptic system under the homogeneous Dirichlet boundary condition, denoting the steady-state system of the generalized two-species Lotka-Volterra competition reaction-diffusion system with cross-diffusion pressure, is considered. By applying the Lyapunov-Schmidt reduction method, the existence of small positive solutions bifurcating from the zero solution is obtained and the stability of these positive bifurcating solutions is also considered according to the standard linearized method.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.