胡世培.由L\'{e}vy过程驱动的仿射方程关联的无限时区的最优二次控制[J].数学年刊A辑,2013,34(2):179~204
由L\'{e}vy过程驱动的仿射方程关联的无限时区的最优二次控制
Infinite Horizontal Optimal Quadratic Control for an AffineEquation Driven by L\'{e}vy Processes
  
DOI:
中文关键词:  线性二次, 无限时区, 倒向随机 Riccati 微分方程, L\'{e}vy 过程
英文关键词:Linear quadratic, Infinite horizon, Backward stochastic Riccati & differential equation, L\'{e}vy processes
基金项目:
Author NameAffiliationE-mail
HU Shipei 1Department of Financial Mathematics and Control Science, School of Mathematical Sciences, Fudan University, Shanghai 200433, China
School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, Jiangsu, China. 
081018024@fudan.edu.cn 
Hits: 4003
Download times: 3212
中文摘要:
      讨论线性二次最优控制问题, 其随机系统是由 L\'{e}vy 过程驱动的具有随机系数而且还具有仿射项的线性随机微分方程. 伴随方程具有无界系数, 其可解性不是显然的. 利用 $\mathscr{B}\mathscr{M}\mathscr{O}$ 鞅理论, 证明伴随方程在有限 时区解的存在唯一性. 在稳定性条件下, 无限时区的倒向随机 Riccati 微分方程和伴随倒向随机方程的解的存在性是通过对应有限 时区的方程的解来逼近的. 利用这些解能够合成最优控制.
英文摘要:
      The author studies a linear quadratic optimal control problem for stochastic systems driven by L\'{e}vy processes where the linear state equation has stochastic coefficients and moreover, an affine term. The adjoint equation has unbounded coefficients, and its solution is not known. Employing $\mathscr{B}\mathscr{M}\mathscr{O}$-martingale theory, the author proves the existence and uniqueness of the solutions to the adjoint equation in a finite horizon. In the case of an infinite horizon, assuming some stabilizability, the author proves via suitable finite horizontal approximation the existence of the solutions to the backward stochastic Riccati differential equation and the adjoint backward stochastic equation. Using these solutions, the author performs the synthesis of the optimal control.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.