詹华税.对流扩散方程的解[J].数学年刊A辑,2013,34(2):235~256
对流扩散方程的解
Solutions to a Convection Diffusion Equation
  
DOI:
中文关键词:  对流扩散方程, Moser 迭代技巧, 弱解, 熄灭性, 正性
英文关键词:Convection diffusion equation, Moser iteration technique, Weak solution, Extinction, Positivity
基金项目:福建省自然科学基金 (No.2012J01011)
Author NameAffiliationE-mail
ZHAN Huashui Department of Mathematics, Xiamen University of Technology, Xiamen 361024, Fujian, China. huashuizhan@163.com 
Hits: 3600
Download times: 3382
中文摘要:
      关注如下的对流扩散方程 $$ u_{t}=\text{div}(|\nabla u^{m}|^{p-2}\nabla u^{m})+\sum_{i=1}^{N}\frac{\partial b_{i}(u^{m})}{\partial x_{i}} $$ 的初边值问题. 若 $p>1+\frac{1}{m}$, 通过考虑正则化问题的解 $u_{k}$, 利用 Moser 迭代技巧, 得到了$u_{k}$ 的 $L^{\infty}$ 模与 梯度 $\nabla u_{k}$ 的 $L^{p}$ 模的局部有界性. 利用紧致性定理, 得到了对流扩散方程本身解的存在性. 若 $p<1+\frac{1}{m},\ p>2$ 或者 $p=1+\frac{1}{m}$, 利用类似的方法可以得到解的存在性. 证明了解的唯一性, 同时讨论了正性和熄灭性等解的性质.
英文摘要:
      This paper concerns the initial-boundary value problem of the following convection diffusion equation: $$ u_{t}=\text{div}(|\nabla u^{m}|^{p-2}\nabla u^{m})+\sum_{i=1}^{N}\frac{\partial b_{i}(u^{m})}{\partial x_{i}}. $$ If $p>1+\frac{1}{m}$, by considering the solution $u_{k}$ to the regularized problem and using the Moser iteration technique, the local bounded properties of the $L^{\infty}$-norm of $u_{k}$ and those of the $L^{p}$-norm of the gradient $\nabla u_{k}$ are obtained. By the compactness theorem, the existence of solution to the convection diffusion equation itself is proved. If $p<1+\frac{1}{m},\ p>2$ or $p=1+\frac{1}{m}$, the existence of solutions is obtained in a similar way. The uniqueness of solutions is also known. At the same time, some properties of solutions, such as the positivity, the extinction, etc. are discussed.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.