詹华税.对流扩散方程的解[J].数学年刊A辑,2013,34(2):235~256 |
对流扩散方程的解 |
Solutions to a Convection Diffusion Equation |
|
DOI: |
中文关键词: 对流扩散方程, Moser 迭代技巧, 弱解, 熄灭性, 正性 |
英文关键词:Convection diffusion equation, Moser iteration technique, Weak
solution, Extinction, Positivity |
基金项目:福建省自然科学基金 (No.2012J01011) |
|
Hits: 3600 |
Download times: 3382 |
中文摘要: |
关注如下的对流扩散方程
$$
u_{t}=\text{div}(|\nabla u^{m}|^{p-2}\nabla
u^{m})+\sum_{i=1}^{N}\frac{\partial b_{i}(u^{m})}{\partial x_{i}}
$$
的初边值问题. 若 $p>1+\frac{1}{m}$, 通过考虑正则化问题的解 $u_{k}$, 利用 Moser 迭代技巧, 得到了$u_{k}$ 的 $L^{\infty}$ 模与 梯度 $\nabla u_{k}$ 的 $L^{p}$ 模的局部有界性. 利用紧致性定理, 得到了对流扩散方程本身解的存在性. 若 $p<1+\frac{1}{m},\ p>2$ 或者 $p=1+\frac{1}{m}$, 利用类似的方法可以得到解的存在性. 证明了解的唯一性, 同时讨论了正性和熄灭性等解的性质. |
英文摘要: |
This paper concerns the initial-boundary value
problem of the following convection diffusion equation:
$$
u_{t}=\text{div}(|\nabla u^{m}|^{p-2}\nabla
u^{m})+\sum_{i=1}^{N}\frac{\partial b_{i}(u^{m})}{\partial x_{i}}.
$$
If $p>1+\frac{1}{m}$, by considering the solution $u_{k}$ to the regularized problem and using the Moser iteration technique, the local bounded properties of the $L^{\infty}$-norm of $u_{k}$ and those of the $L^{p}$-norm of the gradient $\nabla u_{k}$ are obtained. By the compactness theorem, the
existence of solution to the convection diffusion equation itself is proved. If $p<1+\frac{1}{m},\ p>2$ or $p=1+\frac{1}{m}$, the existence of solutions is obtained in a similar way. The uniqueness of solutions is also known. At the same time, some properties of solutions, such as the positivity, the extinction, etc. are discussed. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|