徐宁.Zygmund 空间到 Bloch 空间上径向导数算子与积分型算子的乘积[J].数学年刊A辑,2013,34(3):269~278
Zygmund 空间到 Bloch 空间上径向导数算子与积分型算子的乘积
Products of Radial Derivative Operator andIntegral-Type Operator from ZygmundSpaces to Bloch Spaces
  
DOI:
中文关键词:  径向导数算子, 积分型算子, Zygmund 空间, Bloch 空间
英文关键词:Radial derivative operator, Integral-type operator, Zygmund space, Bloch space
基金项目:
Author NameAffiliationE-mail
XU Ning Department of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, Jiangsu, China. gx899200@126.com 
Hits: 1009
Download times: 13
中文摘要:
      设$H(\mathbb{B})$为单位球上全纯函数类,研究了单位球上 Zygmund 空间到 Bloch 空间上径向导数算子$\Re$与积分型算子$I_\varphi^g$乘积的有界性和紧性, 这里 $$ I_\varphi^g f(z)=\int_0^1 \Re f(\varphi(tz))g(tz)\frac{{\rm d}t}{t},\quad z\in\mathbb{B}, $$ 其中$g\in H(\mathbb{B}),\ g(0)=0$, $\varphi$ 是$\mathbb{B}$上全纯自映射.
英文摘要:
      Let $H(\mathbb{B})$ denote the space of all holomorphic functions on the unit ball $\mathbb{B}\in \mathbb{C}^n$. The author investigates the boundedness and the compactness of the product of the radial derivative operator and the following integral-type operator: $$ I_\varphi^g f(z)=\int_0^1 \Re f(\varphi(tz))g(tz)\frac{{\rm d}t}{t},\quad z\in\mathbb{B}, $$ from Zygmund spaces to Bloch spaces, where $g\in H(\mathbb{B}),\ g(0)=0$, $\varphi$ is a holomorphic self-map of $\mathbb{B}$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.