张中峰,罗家贵,袁平之.关于丢番图方程$x^y+y^x=z^z$[J].数学年刊A辑,2013,34(3):279~284 |
关于丢番图方程$x^y+y^x=z^z$ |
On the Diophantine Equation $x^y+y^x=z^z$ |
|
DOI: |
中文关键词: 指数丢番图方程, 对数线性型, 素因子 |
英文关键词:Exponential Diophantine equations, Linear forms in logarithms,
Prime factor |
基金项目:国家自然科学基金 (No.11271142)和广东省自然科学基金 (No.S2012040007653) |
Author Name | Affiliation | E-mail | ZHANG Zhongfeng | School ofMathematics and Information Science, Zhaoqing University, Zhaoqing
526061, Guangdong, China | zh12zh31f@yahoo.com.cn; | LUO Jiagui | School ofMathematics and Information Science, Zhaoqing University, Zhaoqing
526061, Guangdong, China | luojg62@yahoo.com.cn | YUAN Pingzhi | School of Mathematics, South China Normal University, Guangzhou 510631,
China. | yuanpz@scnu.edu.cn |
|
Hits: 1012 |
Download times: 15 |
中文摘要: |
利用$p$-adic对数线性型估计, 证明了方程x^y+y^x=z^z满足x,y,z均大于1的整数解(x,y,z)必然两两互素且有z<2.8*10^9. |
英文摘要: |
Let $x>1,\ y>1,\ z>1$ be
positive integer solutions of equation $x^y+y^x=z^z$. Using the linear
forms in $p$-adic logarithm, it is proved that $x,y,z$ are pairwise coprime integers and
$z<2.8\times 10^9$. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|