张中峰,罗家贵,袁平之.关于丢番图方程$x^y+y^x=z^z$[J].数学年刊A辑,2013,34(3):279~284
关于丢番图方程$x^y+y^x=z^z$
On the Diophantine Equation $x^y+y^x=z^z$
  
DOI:
中文关键词:  指数丢番图方程, 对数线性型, 素因子
英文关键词:Exponential Diophantine equations, Linear forms in logarithms, Prime factor
基金项目:国家自然科学基金 (No.11271142)和广东省自然科学基金 (No.S2012040007653)
Author NameAffiliationE-mail
ZHANG Zhongfeng School ofMathematics and Information Science, Zhaoqing University, Zhaoqing 526061, Guangdong, China zh12zh31f@yahoo.com.cn; 
LUO Jiagui School ofMathematics and Information Science, Zhaoqing University, Zhaoqing 526061, Guangdong, China luojg62@yahoo.com.cn 
YUAN Pingzhi School of Mathematics, South China Normal University, Guangzhou 510631, China. yuanpz@scnu.edu.cn 
Hits: 1012
Download times: 15
中文摘要:
      利用$p$-adic对数线性型估计, 证明了方程x^y+y^x=z^z满足x,y,z均大于1的整数解(x,y,z)必然两两互素且有z<2.8*10^9.
英文摘要:
      Let $x>1,\ y>1,\ z>1$ be positive integer solutions of equation $x^y+y^x=z^z$. Using the linear forms in $p$-adic logarithm, it is proved that $x,y,z$ are pairwise coprime integers and $z<2.8\times 10^9$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.