魏公明,杨林林.带导数项的奇摄动非线性 Schrodinger方程孤波解的存在性及其集中性质[J].数学年刊A辑,2013,34(3):327~338 |
带导数项的奇摄动非线性 Schrodinger方程孤波解的存在性及其集中性质 |
On Existence and Concentration of Solitary Waves for aClass of Singularly Perturbed Nonlinear SchrodingerEquations with Derivative Terms |
|
DOI: |
中文关键词: 非线性Schrodinger方程, Lyapunov-Schmidt方法, 压缩映射原理 |
英文关键词:Nonlinear Schrodinger equation, Lyapunov-Schmidt method,
Contraction mapping principle |
基金项目:国家自然科学基金 (No.11071164)和上海市教委重点科研创新项目(No.13ZZ118) |
|
Hits: 1006 |
Download times: 11 |
中文摘要: |
利用Lyapunov-Schmidt方法证明了带有一阶导数项和(V)α势函数的非线性Schrodinger方程半经典孤波解的存在性及其集中性质.
具体地讲,当相当于Planck常数的奇摄动参数趋于零时,证明了该非线性Schrodinger方程的孤波解存在并且这些解在其势函数的非退化临界点处集中.
研究的是椭圆型方程的奇摄动问题,方程带有一阶导数项是本文特征之一. |
英文摘要: |
The authors study the existence and concentration of semi-classical solitary waves
for a class of nonlinear Schr¨odinger equations with first order derivative terms and (V )
potentials. Precisely, as the singularly perturbed parameter which corresponds to Planck
constant approches to zero, the solitary waves of these nonlinear Schr¨odinger equations
concentrate at the non-degenerate critical points of potentials. The authors concern singular
perturbation of semilinear elliptic equations with first order derivative terms and this is also
a new feature of the paper. |
View Full Text View/Add Comment Download reader |
Close |