谭卫平,詹小平.亚纯函数微分多项式f^kQ[f]+P[f]的零点分布[J].数学年刊A辑,2013,34(3):365~372
亚纯函数微分多项式f^kQ[f]+P[f]的零点分布
The Distribution of Zeros for Differential Polynomials $f^kQ[f]+P[f]$ of Meromorphic Function
  
DOI:
中文关键词:  整函数, 亚纯函数, 例外集, 微分多项式, ε集
英文关键词:Entire function, Meromorphic function, Exceptional set, Differential polynomial, εset
基金项目:湖南省教育厅科研基金(No.09C228)
Author NameAffiliationE-mail
TAN Weiping Department of Mathematics, Hunan First Normal University, Changsha 410205, China. wptan2004@yahoo.com.cn; 
ZHAN Xiaoping Department of Mathematics, Hunan First Normal University, Changsha 410205, China. zxping0910@126.com 
Hits: 952
Download times: 10
中文摘要:
      研究了超越亚纯函数$f$的微分多项式$f^kQ[f]+P[f]$的零点分布. 给出了以下结果:对于满足$\delta(\infty,f)\geq1-\alpha>0$ ($\alpha$为常数, $0\leq \alpha<1$ )的超越亚纯函数$f(z)$, 若$T(r,f)=O((\log r)^2)$,则微分多项式$f^kQ[f]+P[f]$ ($Q[f]\not\equiv 0,\ P[f] \not\equiv 0$)在 可数个圆盘并集之外有无穷多个零点,其中$k>\frac{1+\Gamma_{P}+\gamma_{P}+\alpha(1+\Gamma_Q+\Gamma_{P}-\gamma_{P})} {1-\alpha }$, $\Gamma_{Q}$是$Q[f]$的权, $\Gamma_{P}$和$\gamma_{P}$是$P[f]$的权和次数.
英文摘要:
      This paper discusses the distribution of zeros for differential polynomial $f^kQ[f]+P[f]$ of trancendental meromorphic function $f$, and gives following result: Letting $f$ be a trancendental meromorphic function with $\delta(\infty,f)\geq1-\alpha>0\ (\alpha$ is a constant, $0\leq\alpha<1)$, such that $T(r,f)=O((\log r)^2)$, then the differential polynomial $f^kQ[f]+P[f]\ (Q[f]\not\equiv 0,P[f]\not\equiv 0)$ has infinitely many zeros outside the union of infinitely many discs, where $k>\frac{1+\Gamma_{P}+\gamma_{P}+\alpha(1+\Gamma_Q+\Gamma_{P}-\gamma_{P})}{1-\alpha }$, $\Gamma_Q$ is the weight of $Q[f]$, $\Gamma_P$ and $\gamma_P$ are the weight and the degree of $P[f]$, respectively.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.