王志杰,吴艳.约化Banach 代数的谱不变性和双曲群[J].数学年刊A辑,2013,34(3):373~384 |
约化Banach 代数的谱不变性和双曲群 |
Spectral Invariance of the Reduced Banach Algebrasand Hyperbolic Groups |
|
DOI: |
中文关键词: 性质 SRD, 约化Banach代数, 谱不变性, 双曲群 |
英文关键词:Property SRD, Reduced Banach algebra, Spectral invariance,
Hyperbolic groups |
基金项目:浙江省青年基金(No.LQ12A01015)和数学天元基金(No.11226122) |
Author Name | Affiliation | E-mail | WANG Zhijie | chool of Mathematical Sciences, Fudan University, Shanghai 200433, China College of Mathematics Physics and Information Engineering, Jiaxing University,
Jiaxing 314001, Zhejiang, China. | wangzhijie112@gmail.com | WU Yan | College of Mathematics Physics and Information Engineering, Jiaxing University,
Jiaxing 314001, Zhejiang, China. | yanwudok@gmail.com |
|
Hits: 823 |
Download times: 11 |
中文摘要: |
主要研究了可数离散群的性质 SRD,
并证明了具有性质 SRD的群上的速降函数全体组成的空间是约化Banach代数
谱不变的稠密子代数.
最后作为例子给出了双曲群具有性质 SRD. |
英文摘要: |
In this paper, the authors mainly study property SRD for a countable discrete
group. It is shown that the set of rapid-decay functions on strongly rapidly decaying group
forms a dense and spectral invariant sub-algebra of the reduced Banach algebra. Finally, it
is shown that hyperbolic groups have property SRD. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|