邓桂丰,刘福窑,路秋英,张伟鹏.一类3维反转系统中的异维环分支[J].数学年刊A辑,2013,34(4):401~414
一类3维反转系统中的异维环分支
3-Dimensional Reversible System
  
DOI:
中文关键词:  异维环, 反转系统, 异宿分支, 活动标架
英文关键词:Heterodimensional cycle, Reversible system, Heteroclinic bifurca- tion, Local coordinate moving frame
基金项目:国家自然科学基金 (No.11101283, No.11178014,No.11101370, No.11001041)和上海市教育委员会科研创新基金(No.12YZ173)
Author NameAffiliationE-mail
DENG Guifeng School of Mathematics and Information, Shanghai Lixin University of Commerce, Shanghai 201620, China. maximedgf@163.com 
LIU Fuyao School of Mathematics and Information, Shanghai Lixin University of Commerce, Shanghai 201620, China. liufuyao@lixin.edu.cn 
LU Qiuying Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China. qiuyinglu@163.com 
ZHANG Weipeng School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China. zhangwp996@nenu.edu.cn 
Hits: 1078
Download times: 12
中文摘要:
      研究了一类3维反转系统中包含2个鞍点的对称异维环分支问题, 且仅限于研究系统的线性对合R的不变集维数为1的情形. 给出了R-对称异宿环与R-对称周期轨线存在和共存的条件, 同时也得到了R-对称的重周期轨线存在性. 其 次, 给出了异宿环、 同宿轨线、 重同宿轨线和单参数族周期轨线的存在性、 唯一性和共存性等结论, 并且发现不可数无穷条周期轨线聚集在某一同宿轨线的小邻域内. 最后给出了相应的分支图.
英文摘要:
      The authors study the bifurcations of symmetric heterodimensional cycles with two saddle points in 3-dimensional reversible system when the fixed points space of the linear involution R is 1-dimensional. Firstly the existence and coexistence of R-symmetric hetero- clinic loop and R-symmetric periodic orbit are obtained. The double R-symmetric periodic orbit is also found. Secondly, the authors present sufficient conditions for the existence, uniqueness and coexistence of heteroclinic loop, homoclinic loops, double homoclinic loop and a single-parameter family of periodic orbits. It is shown that infinitely many periodic orbits accumulate along a homoclinic loop. Moreover, the bifurcation surfaces and their existence regions are located.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.