陈庆,华梦霞,付本银.Krein空间上J-正常算子的可定化性[J].数学年刊A辑,2013,34(5):521~530 |
Krein空间上J-正常算子的可定化性 |
Definitizability of J-normal Operators in Krein Space |
|
DOI: |
中文关键词: Krein空间, J-正常算子, 可定化性 |
英文关键词:Krein space, J-normal operators, Definitizability |
基金项目:国家自然科学基金 (No.11101280),河南省自然科学基金(No.132300410372),2012年度河南省高校青年骨干教师资助计划和南阳师范学院科研基金(No.ZX2010015) |
Author Name | Affiliation | E-mail | CHEN Qing | School of Mathematics and Statistics, Nanyang Normal University,
Nanyang 473061, Henan, China. | aynychq@163.com | HUA Mengxia | School of Mathematics and Statistics, Nanyang Normal University,
Nanyang 473061, Henan, China. | huamxny@163.com | FU Benyin | Department of Applied Mathematics, Shanghai Finance University,
Shanghai 201209, China. | fubenyin@163.com |
|
Hits: 890 |
Download times: 11 |
中文摘要: |
对于Krein空间上J-正常算子
的各种可定化性进行了研究. 利用可定化J-正常算子的谱函数, 给出了临界线的概念,
得到了可定化的J-正常算子成为强可定化算子和一致可定化算子的充要条件. |
英文摘要: |
In this paper, the definitizability of J-normal operators in Krein space is dis-
cussed. Making use of the spectral function of definitizable J-normal operators, the authors
give the definition of critical line and get the necessary and sufficient conditions to guar-
antee that the definitizable J-normal operators become strongly definitizable operators and
uniformly definitizable operators. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|