陈阳洋,赵云.一列连续函数的遍历优化[J].数学年刊A辑,2013,34(5):589~598
一列连续函数的遍历优化
Ergodic Optimization for a Sequence of Continuous Functions
  
DOI:
中文关键词:  遍历测度, 次可加势函数, 最大化测度
英文关键词:Ergodic measures, Subadditive potentials, Maximizing measures
基金项目:国家自然科学基金 (No.11001191), 教育部博士点基金 (No.20103201120001)和大学生创新性实验计划 (No.111028508)
Author NameAffiliationE-mail
CHEN Yangyang Department of Mathematics, Soochow University, Suzhou 215006, Jiangsu, China. oufei861155909@163.com 
ZHAO Yun Department of Mathematics, Soochow University, Suzhou 215006, Jiangsu, China. zhaoyun@suda.edu.cn 
Hits: 1146
Download times: 10
中文摘要:
      设$T:X\rightarrow X$是紧度量空间$X$上的连续映射, $\mathcal{F}=\{f_n\}_{n\geq 1}$是$X$上的一族连续函数. 如果 $\mathcal{F}$是渐近次可加的, 那么$\sup\limits_{x\in \mathrm{Reg}(\mathcal{F},T)}\lim\limits_{n\rightarrow\infty}\frac 1 n f_n (x)=\sup\limits_{x\in X} \limsup\limits_{n\rightarrow\infty}\frac 1 n f_n (x) =\lim\limits_{n\rightarrow\infty}\frac 1 n \max\limits_{x\in X}f_n (x)=\sup\{\mathcal{F}^*(\mu):\mu\in\mathcal{M}_T\}$, 其中$\mathcal{M}_T$表示$T$-\!\!不变的Borel概率测度空间, $\mathrm{Reg}(\mathcal{F},T)$ 表示函数族$\mathcal{F}$的正规点集, $\mathcal{F}^*(\mu)=\lim\limits_{n\rightarrow\infty}\frac 1 n \int f_n \mathrm{d}\mu$. 这把Jenkinson, Schreiber 和 Sturman 等人的一些结果推广到渐近次可加势函数, 并且给出了次可加势函数从属原理成立的充分条件, 最后给出了 一些相关的应用.
英文摘要:
      Let $T:X\rightarrow X$ be a continuous map on a compact metric space $X$, and $\mathcal{F}=\{f_n\}_{n\geq 1}$ a sequence of continuous functions on $X$. If $\mathcal{F}$ is asymptotically subadditive, then $\sup\limits_{x\in \mathrm{Reg}(\mathcal{F},T)}\lim\limits_{n\rightarrow\infty}\frac 1 n f_n (x)=\sup\limits_{x\in X} \limsup\limits_{n\rightarrow\infty}\frac 1 n f_n (x) =\lim\limits_{n\rightarrow\infty}\frac 1 n \max\limits_{x\in X}f_n (x)=\sup\{\mathcal{F}^*(\mu):\mu\in\mathcal{M}_T\}$, where $\mathcal{M}_T$ denotes the space of $T$-invariant Borel probability measures, $\mathrm{Reg}(\mathcal{F},T)$ denotes the set of all regular points for $\mathcal{F}$, and $\mathcal{F}^*(\mu)=\lim\limits_{n\rightarrow\infty}\frac 1 n \int f_n \mathrm{d}\mu$. This generalizes some results of Jenkinson, Schreiber, Sturman etc to asymptotically subadditive potentials. A sufficient condition for the subordination principle of a subadditive potential is also provided. Some applications are given at the end of this paper.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.