刘志新,孙海伟.4个素数平方及若干2的次幂和的丢番图逼近}[J].数学年刊A辑,2013,34(5):599~608
4个素数平方及若干2的次幂和的丢番图逼近}
Diophantine Approximation with 4 Squares of Primes and Powers of 2
  
DOI:
中文关键词:  丢番图不等式, 圆法, Goldbach型问题
英文关键词:Diophantine inequalities, Circle method, Goldbach-type problems
基金项目:教育部博士点基金 (No.20120131120075)
Author NameAffiliationE-mail
LIU Zhixin Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, China. zhixinliu@tju.edu.cn 
SUN Haiwei School of Mathematics and Statistics, Shandong University, Weihai 264209, Shandong, China. sunhaiwei08@mail.sdu.edu.cn 
Hits: 1374
Download times: 17
中文摘要:
      证明了在一定条件下, 不等式 $|\lambda_1p_1^2+\lambda_2p_2^2+\lambda_3p_3^2+\lambda_4p_4^2+\mu_12^{m_1}+\cdots+\mu_s2^{m_s}+\varpi|<\eta$关 于素数$p_1, p_2, p_3, p_4$ 和正整数$m_1, \cdots, m_s$有无穷多解, 改进了之前的结果.
英文摘要:
      The authors prove that under certain conditions, the inequality $|\lambda_1p_1^2+\lambda_2p_2^2+\lambda_3p_3^2+\lambda_4p_4^2+\mu_12^{m_1}+\cdots+\mu_s2^{m_s}+\varpi|<\eta$ with primes $p_1, p_2, p_3, p_4$ and positive integers $m_1, \cdots, m_s$ has infinitely many solutions. This gives an improvement of the former results.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.