汪璇,居文超,钟承奎.具有衰退记忆的非自治非经典扩散方程的强吸引子[J].数学年刊A辑,2013,34(6):671~688
具有衰退记忆的非自治非经典扩散方程的强吸引子
Strong Attractors for the Non-autonomous Nonclassical Diffusion Equations withFading Memory
  
DOI:
中文关键词:  非经典扩散方程, 一致吸引子, 临界指数, 渐近正则性, 衰退记忆
英文关键词:Nonclassical diffusion equation, Uniform attractor, Critical exponent, Asymptotic regularity, Fading memory
基金项目:国家自然科学基金 (No.11101134, No.11361053)和西北师范大学青年教师科研能力提升计划项目(No.NWNU-LKQN-11-5)
Author NameAffiliationE-mail
WANG Xuan College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China. wangxuan@nwnu.edu.cn 
JU Wenchao College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China. 835175199@qq.com 
ZHONG Chengkui Department of Mathematics, Nanjing University, Nanjing 210093, China. ckzhong@lzu.edu.cn 
Hits: 727
Download times: 13
中文摘要:
      在强拓扑空间$H_0^1(\Omega)\cap H^2(\Omega)$$\times L_\mu^2(\mathbb R^+; H_0^1(\Omega)\cap H^2(\Omega))$中, 讨论了具有衰退记忆的非自治非经典扩散方程 当非线性项临界增长时的长时间动力学行为. 当与时间相关的外力项 仅满足平移有界而非 平移紧时, 首先 得到了强解的渐近正则性, 然后获得了强吸引子的存在性及其结构与正则性. 该结果推广和改进了一些已有结果.
英文摘要:
      The authors discuss the long-time dynamical behavior of the non-autonomous nonclassical diffusion equation with fading memory in the strong topological space $H_0^1(\Omega)\cap H^2(\Omega)$$\times L_\mu^2(\mathbb R^+; H_0^1(\Omega)\cap H^2(\Omega))$ when nonlinearity is critical. At first the asymptotic regularity of strong solutions is obtained, and then the existence of a compact uniform attractor together with its structure and regularity is obtained, while the time-dependent forcing term is only translation bounded instead of translation compact. The result extends and improves some known results.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.