马统一.再论仿射不变量$W_{i}(K)W_{i}(K^{})$的下界估计[J].数学年刊A辑,2013,34(6):747~760
再论仿射不变量$W_{i}(K)W_{i}(K^{})$的下界估计
On Lower Bound for Affine Invariant$W_{i}(K)W_{i}(K^{})$
  
DOI:
中文关键词:  凸体, 混合体积, $L_{p}$-\!\!曲率映象, $L_{p}$-John椭球, Mahler猜想
英文关键词:Convex body, Mixed volumes, $L_{p}$-Curvature image, $L_{p}$-John ellipsoid, Mahler conjecture
基金项目:国家自然科学基金 (No.11161019)
Author NameAffiliationE-mail
MA Tongyi College of Mathematics and Statistics, Hexi University, Zhangye 734000, Gansu, China. matongyi@126.com 
Hits: 1244
Download times: 9
中文摘要:
      对于所有凸体与每一个$i$, 寻找仿射不变量$W_{i}(K)W_{i}(K^{*})$下界的问题是一个至今未能完全解决的公开问题. 最近,赵长健考虑了仿射不变量$W_{i}(K)W_{i}(K^{*})$的下界是与凸体$K$本身有关的常数的情形, 并利用混合体积与对偶混合体积的关系理论, 对仿射不变量$W_{i}(K)W_{i}(K^{*})$的下界进行了讨论. 本文进一步讨论仿射不变量$W_{i}(K)W_{i}(K^{*})$的下界估计, 并对具有正的连续曲率且包含原点为其内点的凸体\!$K$, 获得了仿射不变量$W_{i}(K)W_{i}(K^{*})$的几个不同精度的下界, 同时给出了著名的Bourgain-Milman 不等式中通用常数$c$的具体表示值.最后提出了两个公开问题.
英文摘要:
      The problem of finding the lower bound of the product $W_{i}(K)W_{i}(K^{*})$ for all convex bodies for each $i$, has not been solved completely yet. If the lower bound is related to $K$ itself, Zhao gave a lower bound of the product $W_{i}(K)W_{i}(K^{*})$ by relation theory of the mixed volume and dual mixed volume. In this paper, the author further studies the lower bound of affine invariant $W_{i}(K)W_{i}(K^{*})$, and gives some lower bounds with different accuracy of the product $W_{i}(K)W_{i}(K^{*})$ for all convex bodies containing the origin in their interior with a positive continuous curvature function. Moreover, the specific value of universal constants $c$ for famous Bourgain-Milman inequality is obtained. Finally, two open problems are presented.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.