Apr.13 Sun.2025
陈自高.$\mathbb{R}^n$ 上 $p(x)$-Laplace型椭圆问题的无穷多解[J].数学年刊A辑,2014,35(1):45~60
$\mathbb{R}^n$ 上 $p(x)$-Laplace型椭圆问题的无穷多解
Infinitely Many Solutions to $p(x)$-Laplace Type Elliptic Problems in $\mathbb{R}^n$
  
DOI:
中文关键词:  变指数 Sobolev 空间, 散度型算子, $p(x)$-Laplace算子, 多重解
英文关键词:Variable exponent Sobolev space, Divergence type operator, $p(x)$-Laplacian, Multiple solutions
基金项目:国家自然科学基金 (No.11101145)
Author NameAffiliationE-mail
CHEN Zigao Department of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011, China. chenzigao@ncwu.edu.cn 
Hits: 718
Download times: 40
中文摘要:
      讨论了涉及一般散度型椭圆算子($p(x)$-Laplace算子为其特例) 非线性偏微分方程的弱解存在性和多解性问题, 假定非线性项 $f_1, f_2$ 其中之一是超线性的, 且满足 Ambrosetti-Rabinowitz 条件, 另一项是次线性的. 所采用的方法依赖于变指数 Sobolev 空间 $W^{1,p(x)}(\mathbb{R}^n)$ 理论. 主要结果的证明基于喷泉定理和对偶喷泉定理.
英文摘要:
      In this paper, the existence and multiplicity of weak solutions to nonlinear partial differential equations involving a general elliptic operator in divergence form (in particular, a $p(x)$-Laplace operator) in $\mathbb{R}^n$ are investigated, assumed that one of the nonlinear terms $f_1$ and $ f_2$ is superlinear and satisfies the Ambrosetti-Rabinowitz type condition and another one is sublinear. Our approach relies on the theory of variable exponent Sobolev space $W^{1,p(x)}(\mathbb{R}^n)$. The proofs of our main results are based on the Fountain theorem and the Dual Fountain theorem.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.