杨拍,庞学诚.涉及重级零点的亚纯函数的拟正规定则[J].数学年刊A辑,2014,35(2):159~170
涉及重级零点的亚纯函数的拟正规定则
Quasinormal Criterion of Meromorphic Functions with Multiple Zeros
  
DOI:
中文关键词:  亚纯函数, 拟正规族, 正规族
英文关键词:Meromorphic functions, Quasinormal families, Normal families
基金项目:国家自然科学基金 (No.11371139, No.11261029, No.11001081) 和成都信息工程学院科研基金(No.KYTZ201403)
Author NameAffiliationE-mail
YANG Pai College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China. yangpai@cuit.edu.cn 
PANG Xuecheng Department of Mathematics, East China Normal University, Shanghai 200062, China. xcpang@math.ecnu.edu.cn 
Hits: 1223
Download times: 52
中文摘要:
      设 $\mathcal{F}$ 为区域 $D$ 内的只有重级零点的亚纯函数族, $H(z)$ 为区域 $D$ 内的非常数亚纯函数, 且存在 $\nu\in\mathbb{N}$, 使得对于任意的 $a\!\in\!\mathbb{C}$, $\overline{n}\big(D, \frac{1}{H(z)-a}\big)\leq \nu$. 如果对于任意的 $f\!\in\!\mathcal{F}$, $f'(z)\neq H'(z)$, 那么 $\mathcal{F}$ 在区域 $D$ 内 $\nu$ 阶拟正规.
英文摘要:
      Let $\mathcal{F}$ be a family of meromorphic functions in $D$, whose zeros are all multiple. Let $H(z)$ be a nonconstant meromorphic function in $D$, and there exists a $\nu\in\mathbb{N}$, such that for each $a\!\in\!\mathbb{C}$, $\overline{n}\big(D, \frac{1}{H(z)-a}\big)\leq \nu$. If for each $f\!\in\!\mathcal{F}$, $f'(z)\neq H'(z)$, then $\mathcal{F}$ is quasinormal of order $\nu$ in $D$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.