孟晓仁,曹廷彬.多复变整函数涉及全导数的唯一性定理[J].数学年刊A辑,2014,35(2):203~210
多复变整函数涉及全导数的唯一性定理
A Uniqueness Theorem for Entire Functions Concerning the Total Derivative inSeveral Complex Variables
  
DOI:
中文关键词:  唯一性定理, 全导数, 整函数, 多复变
英文关键词:Uniqueness theorem, Total derivative, Entire function, Several complex variables
基金项目:国家自然科学基金 (No.11101201), 江西省自然科学基金(No.20122BA211001)和江西省教育厅自然科学基金(No.GJJ13077)
Author NameAffiliationE-mail
MENG Xiaoren Department of Mathematics, Nanchang University, Nanchang 330031, China. mengxiaoren@qq.com 
CAO Tingbin Corresponding author. Department of Mathematics, Nanchang University, Nanchang 330031, China. tbcao@ncu.edu.cn 
Hits: 1206
Download times: 71
中文摘要:
      结合金路提出的多复变上整函数全导数的概念, 得到了如下定理: 对于 $n$ 维复欧式空间$\mathbb{C}^{n}$上两个非常数整函数$f$和$g$, 以及一个正整数$k$, 如果$\delta(0, f)+\delta(0, g)>1$, $D^{k}f=1\Leftrightarrow D^{k}g=1$, 那么$f\equiv g$. 这一结论是仪洪勋和杨重骏的定理的推广.
英文摘要:
      The authors use the concept of the total derivative of entire functions in several complex variables due to Jin, and obtain that for two nonconstant entire functions $f$ and $g$ on $\mathbb{C}^{n}$ and a positive integer $k, $ if $\delta(0, f)+\delta(0, g)>1$ and $D^{k}f=1\Leftrightarrow D^{k}g=1$, then $f\equiv g. $ This result is an extension of a result of Yi and Yang.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.