谢永红.Clifford分析中对偶的$k$-Hypergenic函数[J].数学年刊A辑,2014,35(2):235~246
Clifford分析中对偶的$k$-Hypergenic函数
Dual k-Hypergenic Functions in Clifford Analysis
  
DOI:
中文关键词:  对偶的$k$-hypergenic函数,Cauchy积分公式,实Clifford 分析
英文关键词:Dual $k$-hypergenic function, Cauchy integral formula, Real Clifford analysis
基金项目:国家自然科学基金 (No.11301136, No.11101139), 河北省自然科学基金(No.A2014205069) 和浙江省自然科学基金 (No.Y6090036, No.Y6100219)
Author NameAffiliationE-mail
XIE Yonghong College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China
School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China. 
xyh1973@126.com 
Hits: 1309
Download times: 53
中文摘要:
      研究了取值于实Clifford代数空间$Cl_{n+1,0}(\mathbb{R})$ 中对偶的$k$-hypergenic函数.首先,给出了对偶的$k$-hypergenic函数的一些等价条件,其中包括 广义的Cauchy-Riemann方程.其次,给出了对偶的hypergenic函数的Cauchy积分公式, 并且应用其证明了 $(1-n)$-hypergenic函数的Cauchy积分公式.最后,证明了对偶的hypergenic函数的Cauchy积分公式右端的积分是 $U\backslash{\partial \Omega_2}$中对偶的hypergenic函数.
英文摘要:
      In this paper, dual $k$-hypergenic functions with values in a real Clifford algebra space $Cl_{n+1,0}(\mathbb{R})$ are discussed. First, some equivalent conditions of dual $k$-hypergenic functions are given, one of which is the generalized Cauchy-Riemann equation. Then, Cauchy integral formula for dual hypergenic functions is given and as an application of it, Cauchy integral formula for $(1-n)$-hypergenic functions is proved. Finally, it is proved that the integral on the right-hand side of Cauchy integral formula for dual hypergenic functions is still a dual hypergenic function in $U\backslash{\partial \Omega_2}$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.