张玉林,姚海楼.森田六元组的几乎分裂序列[J].数学年刊A辑,2014,35(3):373~384
森田六元组的几乎分裂序列
The Almost Split Sequences for the Morita Context
  
DOI:
中文关键词:  环,森田六元组,几乎分裂序列,既约同态
英文关键词:Rings, Morita context, Almost split sequence, Irreducible morphism
基金项目:国家自然科学基金 (No.10971172, No.11271119)和北京市自然科学基金(No.1122002)
Author NameAffiliationE-mail
ZHANG Yulin College of Applied Sciences, Beijing University of Technology, Beijing 100124, China. zhanglinxxby@163.com 
YAO Hailou College of Applied Sciences, Beijing University of Technology, Beijing 100124, China. yaohl@bjut.edu.cn 
Hits: 1798
Download times: 347
中文摘要:
      令$\Lambda_{1}$, $\Lambda_{2}$为两个环,$M$是$(\Lambda_{2}-\Lambda_{1})$-双模,且$N$是$(\Lambda_{1}-\Lambda_{2})$-双模. 六元组$\Gamma=(\Lambda_{1}$, $\Lambda_{2},N,M,\psi,\varphi)$是一个森田六元组.对于$\Gamma$的表示,确定其几乎分裂序列(也称AR-序列) 是非常重要的. 通过$\rmod \Lambda_{1}$和$\rmod \Lambda_{2}$的右(左)几乎分裂同态、既约同态构造$\Gamma$上的相应同态, 并进一步确定它的几乎分裂序列.
英文摘要:
      Let $\Lambda_{1}$, $\Lambda_{2}$ be rings, $M$ be a $(\Lambda_{2}-\Lambda_{1})$-bimodule and $N$ be a $(\Lambda_{1}-\Lambda_{2})$-bimodule. The six-tuple $\Gamma=(\Lambda_{1},\Lambda_{2},N,M,\psi,\varphi)$ is a Morita context. In order to study the representation of $\Gamma$, it is important to determine its almost split sequences (i.e., AR-sequences). The authors construct the corresponding morphisms in $\Gamma$ through the right (left) almost split morphisms and the irreducible morphisms in $\rmod \Lambda_1$ and $\rmod \Lambda_2$. Furthermore, its almost split sequences are determined.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.