粟涓,董新汉.双正交小波滤波器簇代数结构及构造[J].数学年刊A辑,2014,35(4):451~462
双正交小波滤波器簇代数结构及构造
Algebraic Structure and Construction of Bi-orthogonal Filter Banks
  
DOI:
中文关键词:  双正交小波,滤波器,多相向量,多相矩阵,消失矩
英文关键词:Bi-orthogonal wavelets, Filter bank, Polyphase vector, Polyphase matrix, Vanishing moment
基金项目:国家自然科学基金 (No.11171100) 和 高等学校博士学科点专项科研基金(No.20134306110003)
Author NameAffiliationE-mail
SU Juan College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China
College of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha 410114, China. 
suj1234@126.com 
DONG Xinhan College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China. xhdong@hunnu.edu.cn 
Hits: 1549
Download times: 15
中文摘要:
      研究了一类向量多项式两种特殊分解结构,由此引进了与双正交小波滤波器簇相应的多相向量概念, 分析了多相向量分解代数结构, 得到了在低通滤波器给定条件下, 满足任意阶可和规则的对偶低通滤波器构造方法.分析并证明了双正交滤波器簇对应多相向量至多具有 的3种代数分解结构, 根据其分解的形式得到了双正交小波基构造的新方法,该方法便于双正交小波构造计算机程序化.
英文摘要:
      This paper deals with the special algebraic structure of a class of vector polynomial, thus polyphase vector and polyphase matrix of multi-band bi-orthogonal wavelet filter banks are defined. The authors analyse especial decomposition algebraic structure of polyphase vector, and obtain a method for constructing dual scaling filter banks with any order of polynomial preservation when scaling filter bank is given. It is proved that any bi-orthogonal wavelet polyphase vector of scaling filter banks pair can be factored as the product of three kinds of algebraic structures at most. A new method is presented to design all high-pass filter banks corresponding to the given scaling low-pass filter banks. The method is convenient for construction of bi-orthogonal wavelets with computer program.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.